Xigui Wang;Haiyang Yu;Yuwen Chen;Richard O. Sinnott;Zhen Yang
{"title":"PrVFL: Pruning-Aware Verifiable Federated Learning for Heterogeneous Edge Computing","authors":"Xigui Wang;Haiyang Yu;Yuwen Chen;Richard O. Sinnott;Zhen Yang","doi":"10.1109/TMC.2024.3450542","DOIUrl":null,"url":null,"abstract":"In the era emphasizing the privacy of personal data, verifiable federated learning has garnered significant attention as a machine learning approach to safeguard user privacy while simultaneously validating aggregated result. However, there are some unresolved issues when deploying verifiable federated learning in edge computing. Due to the constraint resources, edge computing demands cost saving measurements in model training such as model pruning. Unfortunately, there is currently no protocol capable of enabling users to verify pruning results. Therefore, in this paper, we introduce PrVFL, a verifiable federated learning framework that supports model pruning verification and heterogeneous edge computing. In this scheme, we innovatively utilize zero-knowledge range proof protocol to achieve pruning result verification. Additionally, we first propose a heterogeneous delayed verification scheme supporting the validation of aggregated result for pruned heterogeneous edge models. Addressing the prevalent scenario of performance-heterogeneous edge clients, our scheme empowers each edge user to autonomously choose the desired pruning ratio for each training round based on their specific performance. By employing a global residual model, we ensure that every parameter has an opportunity for training. The extensive experimental results demonstrate the practical performance of our proposed scheme.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10652888/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the era emphasizing the privacy of personal data, verifiable federated learning has garnered significant attention as a machine learning approach to safeguard user privacy while simultaneously validating aggregated result. However, there are some unresolved issues when deploying verifiable federated learning in edge computing. Due to the constraint resources, edge computing demands cost saving measurements in model training such as model pruning. Unfortunately, there is currently no protocol capable of enabling users to verify pruning results. Therefore, in this paper, we introduce PrVFL, a verifiable federated learning framework that supports model pruning verification and heterogeneous edge computing. In this scheme, we innovatively utilize zero-knowledge range proof protocol to achieve pruning result verification. Additionally, we first propose a heterogeneous delayed verification scheme supporting the validation of aggregated result for pruned heterogeneous edge models. Addressing the prevalent scenario of performance-heterogeneous edge clients, our scheme empowers each edge user to autonomously choose the desired pruning ratio for each training round based on their specific performance. By employing a global residual model, we ensure that every parameter has an opportunity for training. The extensive experimental results demonstrate the practical performance of our proposed scheme.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.