Deep learning based enhanced secure emergency video streaming approach by leveraging blockchain technology for Vehicular AdHoc 5G Networks

Muhammad Awais, Yousaf Saeed, Abid Ali, Sohail Jabbar, Awais Ahmad, Yazeed Alkhrijah, Umar Raza, Yasir Saleem
{"title":"Deep learning based enhanced secure emergency video streaming approach by leveraging blockchain technology for Vehicular AdHoc 5G Networks","authors":"Muhammad Awais, Yousaf Saeed, Abid Ali, Sohail Jabbar, Awais Ahmad, Yazeed Alkhrijah, Umar Raza, Yasir Saleem","doi":"10.1186/s13677-024-00665-1","DOIUrl":null,"url":null,"abstract":"VANET is a category of MANET that aims to provide wireless communication. It increases the safety of roads and passengers. Millions of people lose their precious lives in accidents yearly, millions are injured, and others incur disability daily. Emergency vehicles need clear roads to reach their destination faster to save lives. Video streaming can be more effective as compared to textual messages and warnings. To address this issue, we proposed a methodology to use visual sensors, cameras, and OBU to record emergency videos. Initially, the frames are detected. After re-recording, the frames detection algorithm detects the specific event from the video frames. Blockchain encrypts an emergency or specific event using hashing algorithms in the second layer of our proposed framework. In the third layer of the proposed methodology, encrypted video is broadcast with the help of 5G wireless technology to the connected nodes in the VANET. The dataset used in this research comprises up to 72 video sequences averaging about 120 seconds per video. All videos have different traffic conditions and vehicles. The ResNet-50 model is used for the feature extraction process of extracted frames. The model is trained using Tensorflow and Keras deep learning models. The Elbow method finds the optimal K number for the K Means model. This data is split into training and testing. 70% is reserved for training the support vector machine (SVM) model and test datasets, while 30%. 98% accuracy is achieved with 98% precision and 99% recall as results for the proposed methodology.","PeriodicalId":501257,"journal":{"name":"Journal of Cloud Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-024-00665-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

VANET is a category of MANET that aims to provide wireless communication. It increases the safety of roads and passengers. Millions of people lose their precious lives in accidents yearly, millions are injured, and others incur disability daily. Emergency vehicles need clear roads to reach their destination faster to save lives. Video streaming can be more effective as compared to textual messages and warnings. To address this issue, we proposed a methodology to use visual sensors, cameras, and OBU to record emergency videos. Initially, the frames are detected. After re-recording, the frames detection algorithm detects the specific event from the video frames. Blockchain encrypts an emergency or specific event using hashing algorithms in the second layer of our proposed framework. In the third layer of the proposed methodology, encrypted video is broadcast with the help of 5G wireless technology to the connected nodes in the VANET. The dataset used in this research comprises up to 72 video sequences averaging about 120 seconds per video. All videos have different traffic conditions and vehicles. The ResNet-50 model is used for the feature extraction process of extracted frames. The model is trained using Tensorflow and Keras deep learning models. The Elbow method finds the optimal K number for the K Means model. This data is split into training and testing. 70% is reserved for training the support vector machine (SVM) model and test datasets, while 30%. 98% accuracy is achieved with 98% precision and 99% recall as results for the proposed methodology.
利用区块链技术为车载 AdHoc 5G 网络提供基于深度学习的增强型安全应急视频流方法
VANET 是城域网的一个类别,旨在提供无线通信。它提高了道路和乘客的安全性。每年都有数百万人在事故中失去宝贵的生命,数百万人受伤,还有一些人致残。紧急救援车辆需要畅通的道路,以便更快地到达目的地,挽救生命。与文字信息和警告相比,视频流可以更加有效。为了解决这个问题,我们提出了一种使用视觉传感器、摄像头和车载单元来记录紧急视频的方法。首先,对帧进行检测。重新录制后,帧检测算法会从视频帧中检测出特定事件。在我们提出的框架的第二层中,区块链使用哈希算法对紧急情况或特定事件进行加密。在拟议方法的第三层中,加密视频借助 5G 无线技术向 VANET 中的连接节点广播。本研究使用的数据集包括多达 72 个视频序列,平均每个视频约 120 秒。所有视频都有不同的交通状况和车辆。ResNet-50 模型用于提取帧的特征。该模型使用 Tensorflow 和 Keras 深度学习模型进行训练。Elbow 方法可为 K Means 模型找到最佳的 K 数。这些数据被分成训练和测试两部分。70%用于训练支持向量机(SVM)模型和测试数据集,30%用于测试数据集。所提方法的准确率为 98%,精确率为 98%,召回率为 99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信