Large-$N$ SU(4) Schwinger boson theory for coupled-dimer antiferromagnets

Shang-Shun Zhang, Yasuyuki Kato, E. A. Ghioldi, L. O. Manuel, A. E. Trumper, Cristian D. Batista
{"title":"Large-$N$ SU(4) Schwinger boson theory for coupled-dimer antiferromagnets","authors":"Shang-Shun Zhang, Yasuyuki Kato, E. A. Ghioldi, L. O. Manuel, A. E. Trumper, Cristian D. Batista","doi":"arxiv-2409.04627","DOIUrl":null,"url":null,"abstract":"We develop a systematic large-$N$ expansion based on the Schwinger boson\nrepresentation of SU(4) coherent states of dimers for the paradigmatic\nspin-$1/2$ bilayer square lattice Heisenberg antiferromagnet. This system\nexhibits a quantum phase transition between a quantum paramagnetic state and a\nN\\'eel order state, driven by the coupling constant $g = J'/J$, which is\ndefined as the ratio between the inter-dimer $J'$ and intra-dimer $J$ exchange\ninteractions. We demonstrate that this approach accurately describes static and\ndynamic properties on both sides of the quantum phase transition. The critical\ncoupling constant $g_c \\approx 0.42$ and the dynamic spin structure factor\nreproduce quantum Monte Carlo results with high precision. Notably, the $1/N$\ncorrections reveal the longitudinal mode of the magnetically ordered phase\nalong with the overdamping caused by its decay into the two-magnon continuum.\nThe present large-$N$ $SU(N)$ Schwinger boson theory can be extended to more\ngeneral cases of quantum paramagnets that undergo a quantum phase transition\ninto magnetically ordered states.","PeriodicalId":501171,"journal":{"name":"arXiv - PHYS - Strongly Correlated Electrons","volume":"82 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a systematic large-$N$ expansion based on the Schwinger boson representation of SU(4) coherent states of dimers for the paradigmatic spin-$1/2$ bilayer square lattice Heisenberg antiferromagnet. This system exhibits a quantum phase transition between a quantum paramagnetic state and a N\'eel order state, driven by the coupling constant $g = J'/J$, which is defined as the ratio between the inter-dimer $J'$ and intra-dimer $J$ exchange interactions. We demonstrate that this approach accurately describes static and dynamic properties on both sides of the quantum phase transition. The critical coupling constant $g_c \approx 0.42$ and the dynamic spin structure factor reproduce quantum Monte Carlo results with high precision. Notably, the $1/N$ corrections reveal the longitudinal mode of the magnetically ordered phase along with the overdamping caused by its decay into the two-magnon continuum. The present large-$N$ $SU(N)$ Schwinger boson theory can be extended to more general cases of quantum paramagnets that undergo a quantum phase transition into magnetically ordered states.
耦合二聚反铁磁体的大-N$ SU(4) 施文格玻色子理论
我们根据二聚体的苏(4)相干态的施文格玻色子表述,为典范的引脚-$1/2$双层方格海森堡反铁磁体建立了系统的大$N$扩展。该系统在量子顺磁态和N(鳗)阶态之间表现出量子相变,由耦合常数$g = J'/J$驱动,耦合常数被定义为二聚体间$J'$和二聚体内$J$交换相互作用的比率。我们证明这种方法能准确描述量子相变两侧的静态和动态特性。临界耦合常数 $g_c \approx 0.42$ 和动态自旋结构因子高精度地再现了量子蒙特卡罗结果。值得注意的是,1/N$校正揭示了磁有序相的纵向模式及其衰减到双磁子连续体所引起的过阻尼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信