Scalable tensor network algorithm for thermal quantum many-body systems in two dimension

Meng Zhang, Hao Zhang, Chao Wang, Lixin He
{"title":"Scalable tensor network algorithm for thermal quantum many-body systems in two dimension","authors":"Meng Zhang, Hao Zhang, Chao Wang, Lixin He","doi":"arxiv-2409.05285","DOIUrl":null,"url":null,"abstract":"Simulating strongly-correlated quantum many-body systems at finite\ntemperatures is a significant challenge in computational physics. In this work,\nwe present a scalable finite-temperature tensor network algorithm for\ntwo-dimensional quantum many-body systems. We employ the (fermionic) projected\nentangled pair state (PEPS) to represent the vectorization of the quantum\nthermal state and utilize a stochastic reconfiguration method to cool down the\nquantum states from infinite temperature. We validate our method by\nbenchmarking it against the 2D antiferromagnetic Heisenberg model, the\n$J_1$-$J_2$ model, and the Fermi-Hubbard model, comparing physical properties\nsuch as internal energy, specific heat, and magnetic susceptibility with\nresults obtained from stochastic series expansion (SSE), exact diagonalization,\nand determinant quantum Monte Carlo (DQMC).","PeriodicalId":501171,"journal":{"name":"arXiv - PHYS - Strongly Correlated Electrons","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Simulating strongly-correlated quantum many-body systems at finite temperatures is a significant challenge in computational physics. In this work, we present a scalable finite-temperature tensor network algorithm for two-dimensional quantum many-body systems. We employ the (fermionic) projected entangled pair state (PEPS) to represent the vectorization of the quantum thermal state and utilize a stochastic reconfiguration method to cool down the quantum states from infinite temperature. We validate our method by benchmarking it against the 2D antiferromagnetic Heisenberg model, the $J_1$-$J_2$ model, and the Fermi-Hubbard model, comparing physical properties such as internal energy, specific heat, and magnetic susceptibility with results obtained from stochastic series expansion (SSE), exact diagonalization, and determinant quantum Monte Carlo (DQMC).
二维热量子多体系统的可扩展张量网络算法
在有限温度下模拟强相关量子多体系统是计算物理学的一大挑战。在这项工作中,我们提出了一种针对二维量子多体系统的可扩展有限温度张量网络算法。我们采用(费米子)投影纠缠对态(PEPS)来表示量子热态的矢量化,并利用随机重配置方法从无限温冷却量子态。我们以二维反铁磁性海森堡模型、J_1$-J_2$ 模型和费米-胡巴德模型为基准验证了我们的方法,并将内能、比热和磁感应强度等物理特性与随机级数展开(SSE)、精确对角化和行列式量子蒙特卡罗(DQMC)得到的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信