Incipient quantum spin Hall insulator under strong correlations

Peizhi Mai, Jinchao Zhao, Philip W. Phillips
{"title":"Incipient quantum spin Hall insulator under strong correlations","authors":"Peizhi Mai, Jinchao Zhao, Philip W. Phillips","doi":"arxiv-2409.07557","DOIUrl":null,"url":null,"abstract":"To assess prior mean-field studies that the interacting Kane-Mele model\nsupports a novel antiferromagnetic Chern insulating phase (AFCI) for a wide\nrange of sublattice potentials, we analyze the Kane-Mele-Hubbard model in the\npresence of a sublattice potential using determinant quantum Monte Carlo\n(DQMC). Instead of an AFCI, we find that the ground state is a quantum spin\nHall (QSH) insulator for intermediate values of the sublattice potential\n$\\lambda_v$, albeit with a small gap. The QSH state gives way to a trivial band\ninsulator as the sublattice potential increases beyond a critical value. Only\nat small sublattice potentials does the QSH state transition into a trivial\nMott insulator with xy antiferromagnetic correlations. The QAH feature is only\nobserved at high temperature. The QAH feature crosses over to an incipient QSH\nstate when the topological gap stabilizes. Our work is consistent with the\nexperimental observation that in twisted bilayer MoTe$_2$ and WSe$_2$ as well\nas AB stacked MoTe$_2$/WSe$_2$, where QSH is consistently observed at\neven-integer filling over a wide range of parameters.","PeriodicalId":501171,"journal":{"name":"arXiv - PHYS - Strongly Correlated Electrons","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To assess prior mean-field studies that the interacting Kane-Mele model supports a novel antiferromagnetic Chern insulating phase (AFCI) for a wide range of sublattice potentials, we analyze the Kane-Mele-Hubbard model in the presence of a sublattice potential using determinant quantum Monte Carlo (DQMC). Instead of an AFCI, we find that the ground state is a quantum spin Hall (QSH) insulator for intermediate values of the sublattice potential $\lambda_v$, albeit with a small gap. The QSH state gives way to a trivial band insulator as the sublattice potential increases beyond a critical value. Only at small sublattice potentials does the QSH state transition into a trivial Mott insulator with xy antiferromagnetic correlations. The QAH feature is only observed at high temperature. The QAH feature crosses over to an incipient QSH state when the topological gap stabilizes. Our work is consistent with the experimental observation that in twisted bilayer MoTe$_2$ and WSe$_2$ as well as AB stacked MoTe$_2$/WSe$_2$, where QSH is consistently observed at even-integer filling over a wide range of parameters.
强关联下的初生量子自旋霍尔绝缘体
为了评估先前的均场研究,即相互作用的 Kane-Mele 模型在更宽的亚晶格电势范围内支持一种新的反铁磁性切恩绝缘相(AFCI),我们使用行列式量子蒙特卡罗(DQMC)分析了存在亚晶格电势的 Kane-Mele-Hubbard 模型。我们发现,在亚晶格势$\lambda_v$的中间值下,基态是一个量子自旋霍尔(QSH)绝缘体,尽管有一个很小的间隙,而不是一个AFCI。当亚晶格电势增加到临界值以上时,QSH态会让位于琐带绝缘体。只有在较小的亚晶格电势下,QSH态才会转变为具有xy反铁磁关联的三重莫特绝缘体。只有在高温下才能观察到 QAH 特性。当拓扑间隙趋于稳定时,QAH 特性会过渡到初生 QSH 状态。我们的工作与实验观察结果一致,即在扭曲双层 MoTe$_2$ 和 WSe$_2$ 以及 AB 叠层 MoTe$_2$/WSe$_2$ 中,QSH 在很大的参数范围内都能持续观察到偶整数填充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信