Hyejeong Lee Cheon , Nataliya Kizilova , Eirik G. Flekkøy , Matthew J. Mason , Lars P. Folkow , Signe Kjelstrup
{"title":"The nasal cavity of the bearded seal: An effective and robust organ for retaining body heat and water","authors":"Hyejeong Lee Cheon , Nataliya Kizilova , Eirik G. Flekkøy , Matthew J. Mason , Lars P. Folkow , Signe Kjelstrup","doi":"10.1016/j.jtbi.2024.111933","DOIUrl":null,"url":null,"abstract":"<div><p>We report the effects of varying physiological and other properties on the heat and water exchange in the maxilloturbinate structure (MT) of the bearded seal (<em>Erignathus barbatus</em> or Eb) in realistic environments, using a computational fluid dynamics (CFD) model. We find that the water retention in percent is very high (about 90 %) and relatively unaffected by either cold (−30 °C) or warm (10 °C) conditions. The retention of heat is also high, around 80 % . Based on a consideration of entropy production by the maxilloturbinate system, we show that anatomical and physiological properties of the seal provide good conditions for heat and water exchange at the mucus lining in the seal’s nasal cavity. At normal values of tidal volume and maxilloturbinate (MT) length, the air temperature in the MT reaches the body temperature before the air has left the MT channels. This confers a safety factor which is expected to be helpful in exercise, when ventilation increases.</p></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"595 ","pages":"Article 111933"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022519324002182/pdfft?md5=8ad7be5d090c3b97f8f54edfd0f34a9f&pid=1-s2.0-S0022519324002182-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324002182","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We report the effects of varying physiological and other properties on the heat and water exchange in the maxilloturbinate structure (MT) of the bearded seal (Erignathus barbatus or Eb) in realistic environments, using a computational fluid dynamics (CFD) model. We find that the water retention in percent is very high (about 90 %) and relatively unaffected by either cold (−30 °C) or warm (10 °C) conditions. The retention of heat is also high, around 80 % . Based on a consideration of entropy production by the maxilloturbinate system, we show that anatomical and physiological properties of the seal provide good conditions for heat and water exchange at the mucus lining in the seal’s nasal cavity. At normal values of tidal volume and maxilloturbinate (MT) length, the air temperature in the MT reaches the body temperature before the air has left the MT channels. This confers a safety factor which is expected to be helpful in exercise, when ventilation increases.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.