Metastability and Time Scales for Parabolic Equations with Drift 1: The First Time Scale

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Claudio Landim, Jungkyoung Lee, Insuk Seo
{"title":"Metastability and Time Scales for Parabolic Equations with Drift 1: The First Time Scale","authors":"Claudio Landim, Jungkyoung Lee, Insuk Seo","doi":"10.1007/s00205-024-02031-6","DOIUrl":null,"url":null,"abstract":"<p>Consider the elliptic operator given by </p><span>$$\\begin{aligned} {\\mathscr {L}}_{\\varepsilon }f\\,=\\, {\\varvec{b}} \\cdot \\nabla f \\,+\\, \\varepsilon \\, \\Delta f \\end{aligned}$$</span>(0.1)<p>for some smooth vector field <span>\\(\\varvec{b}:{\\mathbb R}^d\\rightarrow {\\mathbb R}^d\\)</span> and a small parameter <span>\\(\\varepsilon &gt;0\\)</span>. Consider the initial-valued problem </p><span>$$\\begin{aligned} \\left\\{ \\begin{aligned}&amp;\\partial _ t u_\\varepsilon \\,=\\, {\\mathscr {L}}_\\varepsilon u_\\varepsilon , \\\\&amp;u_\\varepsilon (0, \\cdot ) = u_0(\\cdot ) , \\end{aligned} \\right. \\end{aligned}$$</span>(0.2)<p>for some bounded continuous function <span>\\(u_0\\)</span>. Denote by <span>\\(\\mathcal {M}_0\\)</span> the set of critical points of <span>\\(\\varvec{b}\\)</span> which are stable stationary points for the ODE <span>\\(\\dot{\\varvec{x}} (t) = \\varvec{b} (\\varvec{x}(t))\\)</span>. Under the hypothesis that <span>\\(\\mathcal {M}_0\\)</span> is finite and <span>\\(\\varvec{b} = -(\\nabla U + \\varvec{\\ell })\\)</span>, where <span>\\(\\varvec{\\ell }\\)</span> is a divergence-free field orthogonal to <span>\\(\\nabla U\\)</span>, the main result of this article states that there exist a time-scale <span>\\(\\theta ^{(1)}_\\varepsilon \\)</span>, <span>\\(\\theta ^{(1)}_\\varepsilon \\rightarrow \\infty \\)</span> as <span>\\(\\varepsilon \\rightarrow 0\\)</span>, and a Markov semigroup <span>\\(\\{p_t: t\\ge 0\\}\\)</span> defined on <span>\\(\\mathcal {M}_0\\)</span> such that </p><span>$$\\begin{aligned} \\lim _{\\varepsilon \\rightarrow 0} u_\\varepsilon ( t \\, \\theta ^{(1)}_\\varepsilon , \\varvec{x} ) \\;=\\; \\sum _{\\varvec{m}'\\in \\mathcal {M}_0} p_t(\\varvec{m}, \\varvec{m}')\\, u_0(\\varvec{m}')\\; \\end{aligned}$$</span><p>for all <span>\\(t&gt;0\\)</span> and <span>\\(\\varvec{x}\\)</span> in the domain of attraction of <span>\\(\\varvec{m}\\)</span> [for the ODE <span>\\(\\dot{\\varvec{x}}(t) = \\varvec{b}(\\varvec{x}(t))\\)</span>]. The time scale <span>\\(\\theta ^{(1)}\\)</span> is critical in the sense that, for all time scales <span>\\(\\varrho _\\varepsilon \\)</span> such that <span>\\(\\varrho _\\varepsilon \\rightarrow \\infty \\)</span>, <span>\\(\\varrho _\\varepsilon /\\theta ^{(1)}_\\varepsilon \\rightarrow 0\\)</span>, </p><span>$$\\begin{aligned} \\lim _{\\varepsilon \\rightarrow 0} u_\\varepsilon ( \\varrho _\\varepsilon , \\varvec{x} ) \\;=\\; u_0(\\varvec{m}) \\end{aligned}$$</span><p>for all <span>\\(\\varvec{x} \\in \\mathcal {D}(\\varvec{m})\\)</span>. Namely, <span>\\(\\theta _\\varepsilon ^{(1)}\\)</span> is the first scale at which the solution to the initial-valued problem starts to change. In a companion paper [20] we extend this result finding all critical time-scales at which the solution of the initial-valued problem (0.2) evolves smoothly in time and we show that the solution <span>\\(u_\\varepsilon \\)</span> is expressed in terms of the semigroup of some Markov chain taking values in sets formed by unions of critical points of <span>\\(\\varvec{b}\\)</span>.</p>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00205-024-02031-6","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Consider the elliptic operator given by

$$\begin{aligned} {\mathscr {L}}_{\varepsilon }f\,=\, {\varvec{b}} \cdot \nabla f \,+\, \varepsilon \, \Delta f \end{aligned}$$(0.1)

for some smooth vector field \(\varvec{b}:{\mathbb R}^d\rightarrow {\mathbb R}^d\) and a small parameter \(\varepsilon >0\). Consider the initial-valued problem

$$\begin{aligned} \left\{ \begin{aligned}&\partial _ t u_\varepsilon \,=\, {\mathscr {L}}_\varepsilon u_\varepsilon , \\&u_\varepsilon (0, \cdot ) = u_0(\cdot ) , \end{aligned} \right. \end{aligned}$$(0.2)

for some bounded continuous function \(u_0\). Denote by \(\mathcal {M}_0\) the set of critical points of \(\varvec{b}\) which are stable stationary points for the ODE \(\dot{\varvec{x}} (t) = \varvec{b} (\varvec{x}(t))\). Under the hypothesis that \(\mathcal {M}_0\) is finite and \(\varvec{b} = -(\nabla U + \varvec{\ell })\), where \(\varvec{\ell }\) is a divergence-free field orthogonal to \(\nabla U\), the main result of this article states that there exist a time-scale \(\theta ^{(1)}_\varepsilon \), \(\theta ^{(1)}_\varepsilon \rightarrow \infty \) as \(\varepsilon \rightarrow 0\), and a Markov semigroup \(\{p_t: t\ge 0\}\) defined on \(\mathcal {M}_0\) such that

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0} u_\varepsilon ( t \, \theta ^{(1)}_\varepsilon , \varvec{x} ) \;=\; \sum _{\varvec{m}'\in \mathcal {M}_0} p_t(\varvec{m}, \varvec{m}')\, u_0(\varvec{m}')\; \end{aligned}$$

for all \(t>0\) and \(\varvec{x}\) in the domain of attraction of \(\varvec{m}\) [for the ODE \(\dot{\varvec{x}}(t) = \varvec{b}(\varvec{x}(t))\)]. The time scale \(\theta ^{(1)}\) is critical in the sense that, for all time scales \(\varrho _\varepsilon \) such that \(\varrho _\varepsilon \rightarrow \infty \), \(\varrho _\varepsilon /\theta ^{(1)}_\varepsilon \rightarrow 0\),

$$\begin{aligned} \lim _{\varepsilon \rightarrow 0} u_\varepsilon ( \varrho _\varepsilon , \varvec{x} ) \;=\; u_0(\varvec{m}) \end{aligned}$$

for all \(\varvec{x} \in \mathcal {D}(\varvec{m})\). Namely, \(\theta _\varepsilon ^{(1)}\) is the first scale at which the solution to the initial-valued problem starts to change. In a companion paper [20] we extend this result finding all critical time-scales at which the solution of the initial-valued problem (0.2) evolves smoothly in time and we show that the solution \(u_\varepsilon \) is expressed in terms of the semigroup of some Markov chain taking values in sets formed by unions of critical points of \(\varvec{b}\).

Abstract Image

具有漂移的抛物线方程的迁移性和时间尺度 1:第一个时间尺度
考虑$$begin{aligned} {mathscr {L}}_{\varepsilon }f\,=\, {\varvec{b}} 给出的椭圆算子。\(0.1)对于某个光滑矢量场\(\varvec{b}:{mathbb R}^d\rightarrow {mathbb R}^d\)和一个小参数\(\varepsilon >0\)。考虑初值问题 $$\begin{aligned}\¼left\{ \begin{aligned}&\partial _ t u_\varepsilon \,=\, {\mathscr {L}}_\varepsilon u_\varepsilon , \&u_\varepsilon (0, \cdot ) = u_0(\cdot ) , \end{aligned}.\对\end{aligned}$$(0.2)for some bounded continuous function \(u_0\).用 \(\mathcal {M}_0\) 表示 \(\varvec{b}\) 的临界点集合,这些临界点是 ODE \(\dot{\varvec{x}} 的稳定静止点。(t) = \varvec{b} (\varvec{x}(t))\).假设\(\mathcal {M}_0\) 是有限的,并且\(\varvec{b} = -(\nabla U + \varvec{ell })\),其中\(\varvec{ell }\)是与\(\nabla U\) 正交的无发散域、本文的主要结果指出存在一个时间尺度 \(\theta ^{(1)}_\varepsilon \), \(\theta ^{(1)}_\varepsilon \rightarrow \infty \)为 \(\varepsilon \rightarrow 0\), 和一个马尔可夫半群 \(\{p_t:定义在(mathcal {M}_0)上,这样 $$\begin{aligned}\u_\varepsilon ( t\, \theta ^{(1)}_\varepsilon , \varvec{x} )=; \sum _{\varvec{m}'\in \mathcal {M}_0} p_t(\varvec{m}, \varvec{m}')\, u_0(\varvec{m}')\; \end{aligned}$$for all \(t>;0) and \(\varvec{x}\) in the domain of attraction of \(\varvec{m}\) [for the ODE \(\dot\{varvec{x}}(t) = \varvec{b}(\varvec{x}(t))\)].时间尺度 \(\theta ^{(1)}\) 是临界的,因为对于所有时间尺度 \(\varrho _\varepsilon \) such that \(\varrho _\varepsilon \rightarrow \infty \)、\(\varrho _\varepsilon /\theta ^{(1)}_\varepsilon \rightarrow 0\), $$\begin{aligned}\limit _{\varepsilon \rightarrow 0} u_\varepsilon ( \varrho _\varepsilon , \varvec{x} ) \;=\; u_0(\varvec{m}) \end{aligned}$$for all \(\varvec{x})\in (mathcal {D}(\varvec{m})\).也就是说,(\theta _\varepsilon ^{(1)}\) 是初值问题解开始发生变化的第一个尺度。在另一篇论文[20]中,我们扩展了这一结果,找到了初值问题(0.2)的解在时间上平滑演化的所有临界时间尺度,并证明解\(u_\varepsilon \)可以用取值于由\(\varvec{b}\)的临界点的联合形成的集合的某些马尔可夫链的半群表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信