Space Quasi-Periodic Steady Euler Flows Close to the Inviscid Couette Flow

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Luca Franzoi, Nader Masmoudi, Riccardo Montalto
{"title":"Space Quasi-Periodic Steady Euler Flows Close to the Inviscid Couette Flow","authors":"Luca Franzoi,&nbsp;Nader Masmoudi,&nbsp;Riccardo Montalto","doi":"10.1007/s00205-024-02028-1","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the existence of steady <i>space quasi-periodic</i> stream functions, solutions for the Euler equation in a vorticity-stream function formulation in the two dimensional channel <span>\\({{\\mathbb {R}}}\\times [-1,1]\\)</span>. These solutions bifurcate from a prescribed shear equilibrium near the Couette flow, whose profile induces finitely many modes of oscillations in the horizontal direction for the linearized problem. Using a Nash–Moser implicit function iterative scheme, near such equilibrium we construct small amplitude, space reversible stream functions, slightly deforming the linear solutions and retaining the horizontal quasi-periodic structure. These solutions exist for most values of the parameters characterizing the shear equilibrium. As a by-product, the streamlines of the nonlinear flow exhibit Kelvin’s cat eye-like trajectories arising from the finitely many stagnation lines of the shear equilibrium.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02028-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02028-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove the existence of steady space quasi-periodic stream functions, solutions for the Euler equation in a vorticity-stream function formulation in the two dimensional channel \({{\mathbb {R}}}\times [-1,1]\). These solutions bifurcate from a prescribed shear equilibrium near the Couette flow, whose profile induces finitely many modes of oscillations in the horizontal direction for the linearized problem. Using a Nash–Moser implicit function iterative scheme, near such equilibrium we construct small amplitude, space reversible stream functions, slightly deforming the linear solutions and retaining the horizontal quasi-periodic structure. These solutions exist for most values of the parameters characterizing the shear equilibrium. As a by-product, the streamlines of the nonlinear flow exhibit Kelvin’s cat eye-like trajectories arising from the finitely many stagnation lines of the shear equilibrium.

接近不粘性库尔特流的空间准周期稳定欧拉流
我们证明了在二维通道 \({{\mathbb {R}}}\times [-1,1]\) 中存在稳定空间准周期流函数,即涡流-流函数公式中欧拉方程的解。这些解是从 Couette 流附近的规定剪切平衡分岔出来的,其轮廓在线性化问题的水平方向上引起有限多个振荡模式。利用纳什-莫泽隐含函数迭代方案,我们在这种平衡附近构建了小振幅、空间可逆的流函数,使线性解略有变形,并保留了水平准周期结构。这些解适用于大多数剪切平衡参数值。作为副产品,非线性流的流线表现出类似开尔文猫眼的轨迹,产生于剪切平衡的有限多条停滞线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信