{"title":"Space Quasi-Periodic Steady Euler Flows Close to the Inviscid Couette Flow","authors":"Luca Franzoi, Nader Masmoudi, Riccardo Montalto","doi":"10.1007/s00205-024-02028-1","DOIUrl":null,"url":null,"abstract":"<div><p>We prove the existence of steady <i>space quasi-periodic</i> stream functions, solutions for the Euler equation in a vorticity-stream function formulation in the two dimensional channel <span>\\({{\\mathbb {R}}}\\times [-1,1]\\)</span>. These solutions bifurcate from a prescribed shear equilibrium near the Couette flow, whose profile induces finitely many modes of oscillations in the horizontal direction for the linearized problem. Using a Nash–Moser implicit function iterative scheme, near such equilibrium we construct small amplitude, space reversible stream functions, slightly deforming the linear solutions and retaining the horizontal quasi-periodic structure. These solutions exist for most values of the parameters characterizing the shear equilibrium. As a by-product, the streamlines of the nonlinear flow exhibit Kelvin’s cat eye-like trajectories arising from the finitely many stagnation lines of the shear equilibrium.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02028-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02028-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove the existence of steady space quasi-periodic stream functions, solutions for the Euler equation in a vorticity-stream function formulation in the two dimensional channel \({{\mathbb {R}}}\times [-1,1]\). These solutions bifurcate from a prescribed shear equilibrium near the Couette flow, whose profile induces finitely many modes of oscillations in the horizontal direction for the linearized problem. Using a Nash–Moser implicit function iterative scheme, near such equilibrium we construct small amplitude, space reversible stream functions, slightly deforming the linear solutions and retaining the horizontal quasi-periodic structure. These solutions exist for most values of the parameters characterizing the shear equilibrium. As a by-product, the streamlines of the nonlinear flow exhibit Kelvin’s cat eye-like trajectories arising from the finitely many stagnation lines of the shear equilibrium.