Existence and Stability of Nonmonotone Hydraulic Shocks for the Saint Venant Equations of Inclined Thin-Film Flow

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Grégory Faye, L. Miguel Rodrigues, Zhao Yang, Kevin Zumbrun
{"title":"Existence and Stability of Nonmonotone Hydraulic Shocks for the Saint Venant Equations of Inclined Thin-Film Flow","authors":"Grégory Faye,&nbsp;L. Miguel Rodrigues,&nbsp;Zhao Yang,&nbsp;Kevin Zumbrun","doi":"10.1007/s00205-024-02033-4","DOIUrl":null,"url":null,"abstract":"<div><p>Extending the work of Yang–Zumbrun for the hydrodynamically stable case of Froude number <span>\\(F&lt;2\\)</span>, we categorize completely the existence and convective stability of hydraulic shock profiles of the Saint Venant equations of inclined thin film flow. Moreover, we confirm by numerical experiment that asymptotic dynamics for general Riemann data is given in the hydrodynamic instability regime by either stable hydraulic shock waves, or a pattern consisting of an invading roll wave front separated by a finite terminating Lax shock from a constant state at plus infinity. Notably, profiles, and existence and stability diagrams, are all rigorously obtained by mathematical analysis and explicit calculation.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-024-02033-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02033-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Extending the work of Yang–Zumbrun for the hydrodynamically stable case of Froude number \(F<2\), we categorize completely the existence and convective stability of hydraulic shock profiles of the Saint Venant equations of inclined thin film flow. Moreover, we confirm by numerical experiment that asymptotic dynamics for general Riemann data is given in the hydrodynamic instability regime by either stable hydraulic shock waves, or a pattern consisting of an invading roll wave front separated by a finite terminating Lax shock from a constant state at plus infinity. Notably, profiles, and existence and stability diagrams, are all rigorously obtained by mathematical analysis and explicit calculation.

Abstract Image

倾斜薄膜流圣韦南方程非单调水力冲击的存在性和稳定性
通过扩展杨-仲布伦(Yang-Zumbrun)针对弗劳德数(F<2\)的流体力学稳定情况所做的工作,我们对倾斜薄膜流的圣维南方程的水力冲击剖面的存在性和对流稳定性进行了完整的分类。此外,我们还通过数值实验证实,一般黎曼数据的渐近动力学在流体力学不稳定性机制下,要么是稳定的水力冲击波,要么是由入侵的滚动波浪前沿组成的模式,该波浪前沿被一个有限的终止拉克斯冲击从正无穷处的恒定状态分隔开来。值得注意的是,剖面图、存在图和稳定图都是通过数学分析和显式计算严格获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信