Local Well-Posedness of the Capillary-Gravity Water Waves with Acute Contact Angles

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Mei Ming, Chao Wang
{"title":"Local Well-Posedness of the Capillary-Gravity Water Waves with Acute Contact Angles","authors":"Mei Ming,&nbsp;Chao Wang","doi":"10.1007/s00205-024-02019-2","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the two-dimensional capillary-gravity water waves problem where the free surface <span>\\(\\Gamma _t\\)</span> intersects the bottom <span>\\(\\Gamma _b\\)</span> at two contact points. In our previous works (Ming and Wang in SIAM J Math Anal 52(5):4861–4899; Commun Pure Appl Math 74(2), 225–285, 2021), the local well-posedness for this problem has been proved with the contact angles less than <span>\\(\\pi /16\\)</span>. In this paper, we study the case where the contact angles belong to <span>\\((0, \\pi /2)\\)</span>. It involves much worse singularities generated from corresponding elliptic systems, which have this strong influence on the regularities for the free surface and the velocity field. Combining the theory of singularity decompositions for elliptic problems with the structure of the water waves system, we obtain a priori energy estimates. Based on these estimates, we also prove the local well-posedness of the solutions in a geometric formulation.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02019-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the two-dimensional capillary-gravity water waves problem where the free surface \(\Gamma _t\) intersects the bottom \(\Gamma _b\) at two contact points. In our previous works (Ming and Wang in SIAM J Math Anal 52(5):4861–4899; Commun Pure Appl Math 74(2), 225–285, 2021), the local well-posedness for this problem has been proved with the contact angles less than \(\pi /16\). In this paper, we study the case where the contact angles belong to \((0, \pi /2)\). It involves much worse singularities generated from corresponding elliptic systems, which have this strong influence on the regularities for the free surface and the velocity field. Combining the theory of singularity decompositions for elliptic problems with the structure of the water waves system, we obtain a priori energy estimates. Based on these estimates, we also prove the local well-posedness of the solutions in a geometric formulation.

Abstract Image

具有锐接触角的毛细管-重力水波的局部良好假设性
我们考虑自由表面 \(\Gamma _t\) 与底部 \(\Gamma _b\) 相交于两个接触点的二维毛细重力水波问题。在我们之前的工作(Ming 和 Wang in SIAM J Math Anal 52(5):4861-4899; Commun Pure Appl Math 74(2), 225-285, 2021)中,已经证明了接触角小于 \(\pi /16\) 时该问题的局部可好求性。在本文中,我们研究了接触角属于 \((0, \pi /2)\) 的情况。它涉及由相应椭圆系统生成的更严重的奇点,对自由表面和速度场的规则性影响很大。结合椭圆问题的奇点分解理论和水波系统的结构,我们得到了先验的能量估计。基于这些估计值,我们还证明了以几何形式求解的局部好求解性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信