Marcelo F. Furtado, João Pablo Pinheiro da Silva, Karla Carolina V. De Sousa
{"title":"Sign-changing solution for an elliptic equation with critical growth at the boundary","authors":"Marcelo F. Furtado, João Pablo Pinheiro da Silva, Karla Carolina V. De Sousa","doi":"10.1007/s00030-024-00990-z","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of sign-changing solution to the problem </p><span>$$\\begin{aligned} -\\Delta u-\\dfrac{1}{2}\\left( x\\cdot \\nabla u\\right) =\\lambda u, \\hbox { in }\\mathbb {R}_{+}^{N}, \\qquad \\dfrac{\\partial u}{\\partial \\nu }=|u|^{2_*-2}u, \\hbox { on } \\partial \\mathbb {R}_{+}^{N}, \\end{aligned}$$</span><p>where <span>\\(\\mathbb {R}^N_+ = \\{(x',x_N): x' \\in \\mathbb {R}^{N-1},\\,x_N>0 \\}\\)</span> is the upper half-space, <span>\\(2_*:=2(N-1)/(N-2)\\)</span>, <span>\\(N \\ge 7\\)</span>, <span>\\(\\frac{\\partial u}{\\partial \\nu }\\)</span> is the partial outward normal derivative and the parameter <span>\\(\\lambda >0\\)</span> interacts with the spectrum of the linearized problem. In the proof, we apply variational methods.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"154 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00990-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We prove the existence of sign-changing solution to the problem
$$\begin{aligned} -\Delta u-\dfrac{1}{2}\left( x\cdot \nabla u\right) =\lambda u, \hbox { in }\mathbb {R}_{+}^{N}, \qquad \dfrac{\partial u}{\partial \nu }=|u|^{2_*-2}u, \hbox { on } \partial \mathbb {R}_{+}^{N}, \end{aligned}$$
where \(\mathbb {R}^N_+ = \{(x',x_N): x' \in \mathbb {R}^{N-1},\,x_N>0 \}\) is the upper half-space, \(2_*:=2(N-1)/(N-2)\), \(N \ge 7\), \(\frac{\partial u}{\partial \nu }\) is the partial outward normal derivative and the parameter \(\lambda >0\) interacts with the spectrum of the linearized problem. In the proof, we apply variational methods.