Tingfeng Xia, Bojing Wu, Huanzhi Zhang, Fen Xu, Lixian Sun, Xiangcheng Lin, Caihang Liang, Lei Ma, Hongliang Peng, Bin Li, Erhu Yan
{"title":"Titanium dioxide/graphene oxide synergetic reinforced composite phase change materials with excellent thermal energy storage and photo-thermal performances","authors":"Tingfeng Xia, Bojing Wu, Huanzhi Zhang, Fen Xu, Lixian Sun, Xiangcheng Lin, Caihang Liang, Lei Ma, Hongliang Peng, Bin Li, Erhu Yan","doi":"10.1016/j.jmrt.2024.09.011","DOIUrl":null,"url":null,"abstract":"The development of advanced composite solid-solid phase change materials (SSPCMs) is urgent to explore for improving solar energy harvesting and storage. Herein, novel composite SSPCMs with synergetic cross-linking structure were fabricated through polymerization using GO and TiO constructed on the polyurethane framework skeleton. GO and TiO synergetic enhanced polymer framework played a role as skeletal structure to encapsulate PEG in the molecular chains, and provided as highly thermal conductive pathways for the composite SSPCMs. TiO nanoparticles performed as extended surface on the skeletal structure for further improvement in thermal conductivity. The composite SSPCMs exhibited a remarkably improved thermal conductivity as high as 0.7 W/(m‧K) and fast thermal response rate. The good light adsorption property of TiO enhanced the light absorbance efficiency of the composite SSPCMs by 94.4%. And the photo-thermal conversion efficiency of the composite SSPCMs highly reached 93.5%. Meanwhile, the composite SSPCMs exhibited excellent anti-leakage performance and shape stability under high temperature. Consequently, the as-prepared composite SSPCMs possessed a potential for applications in thermal energy storage and solar energy utilization systems.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.09.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The development of advanced composite solid-solid phase change materials (SSPCMs) is urgent to explore for improving solar energy harvesting and storage. Herein, novel composite SSPCMs with synergetic cross-linking structure were fabricated through polymerization using GO and TiO constructed on the polyurethane framework skeleton. GO and TiO synergetic enhanced polymer framework played a role as skeletal structure to encapsulate PEG in the molecular chains, and provided as highly thermal conductive pathways for the composite SSPCMs. TiO nanoparticles performed as extended surface on the skeletal structure for further improvement in thermal conductivity. The composite SSPCMs exhibited a remarkably improved thermal conductivity as high as 0.7 W/(m‧K) and fast thermal response rate. The good light adsorption property of TiO enhanced the light absorbance efficiency of the composite SSPCMs by 94.4%. And the photo-thermal conversion efficiency of the composite SSPCMs highly reached 93.5%. Meanwhile, the composite SSPCMs exhibited excellent anti-leakage performance and shape stability under high temperature. Consequently, the as-prepared composite SSPCMs possessed a potential for applications in thermal energy storage and solar energy utilization systems.