Madeleing Taborda Barraza, Luis Urbano Durlo Tambara Junior, Jonas Alexandre, Gustavo de Castro Xavier, Juliane Castro Carneiro, Luiz Gustavo Cruz Henrique da Silva, Afonso R.G.de Azevedo
{"title":"Characterization of port dredging waste for potential used as incorporation on materials for civil construction: A case study in Brazil","authors":"Madeleing Taborda Barraza, Luis Urbano Durlo Tambara Junior, Jonas Alexandre, Gustavo de Castro Xavier, Juliane Castro Carneiro, Luiz Gustavo Cruz Henrique da Silva, Afonso R.G.de Azevedo","doi":"10.1016/j.jmrt.2024.09.023","DOIUrl":null,"url":null,"abstract":"Port operation activities have been expanding globally, driven by globalization and increased cargo handling. Developing countries, such as Brazil, China, and India, are experiencing a rise in the construction of modern ports. Recently, sustainability concepts have been integrated into maritime transportation, focusing on the construction and management of ports and exploring the reuse of waste generated during operations. The main objective of this study is to evaluate the potential application of the dredging material of port of açu (DMPA), sourced from a new private port in Rio de Janeiro State, Brazil, in developing sustainable construction materials. The dredged material, collected from the bottom of the shipping canal was physically, chemically, and morphologically characterized to compare its results with the processing and application requirements for alternative materials. A standard method for primary processing was developed, providing deeper insights into the material’s condition. Results indicate that the natural dredged material can be utilized as a filler in interlocking blocks or mortar. Additionally, an alternative processing route involving calcination can enhance the material's reactivity, presenting opportunities for higher-value applications, although the energy costs must be considered. The calcination of 650 °C resulted in a higher pozzolanic index, increasing its reactivity. The study concludes that port dredging waste from this case study has significant potential for use in sustainable building material development.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.09.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Port operation activities have been expanding globally, driven by globalization and increased cargo handling. Developing countries, such as Brazil, China, and India, are experiencing a rise in the construction of modern ports. Recently, sustainability concepts have been integrated into maritime transportation, focusing on the construction and management of ports and exploring the reuse of waste generated during operations. The main objective of this study is to evaluate the potential application of the dredging material of port of açu (DMPA), sourced from a new private port in Rio de Janeiro State, Brazil, in developing sustainable construction materials. The dredged material, collected from the bottom of the shipping canal was physically, chemically, and morphologically characterized to compare its results with the processing and application requirements for alternative materials. A standard method for primary processing was developed, providing deeper insights into the material’s condition. Results indicate that the natural dredged material can be utilized as a filler in interlocking blocks or mortar. Additionally, an alternative processing route involving calcination can enhance the material's reactivity, presenting opportunities for higher-value applications, although the energy costs must be considered. The calcination of 650 °C resulted in a higher pozzolanic index, increasing its reactivity. The study concludes that port dredging waste from this case study has significant potential for use in sustainable building material development.