Characterization of port dredging waste for potential used as incorporation on materials for civil construction: A case study in Brazil

Madeleing Taborda Barraza, Luis Urbano Durlo Tambara Junior, Jonas Alexandre, Gustavo de Castro Xavier, Juliane Castro Carneiro, Luiz Gustavo Cruz Henrique da Silva, Afonso R.G.de Azevedo
{"title":"Characterization of port dredging waste for potential used as incorporation on materials for civil construction: A case study in Brazil","authors":"Madeleing Taborda Barraza, Luis Urbano Durlo Tambara Junior, Jonas Alexandre, Gustavo de Castro Xavier, Juliane Castro Carneiro, Luiz Gustavo Cruz Henrique da Silva, Afonso R.G.de Azevedo","doi":"10.1016/j.jmrt.2024.09.023","DOIUrl":null,"url":null,"abstract":"Port operation activities have been expanding globally, driven by globalization and increased cargo handling. Developing countries, such as Brazil, China, and India, are experiencing a rise in the construction of modern ports. Recently, sustainability concepts have been integrated into maritime transportation, focusing on the construction and management of ports and exploring the reuse of waste generated during operations. The main objective of this study is to evaluate the potential application of the dredging material of port of açu (DMPA), sourced from a new private port in Rio de Janeiro State, Brazil, in developing sustainable construction materials. The dredged material, collected from the bottom of the shipping canal was physically, chemically, and morphologically characterized to compare its results with the processing and application requirements for alternative materials. A standard method for primary processing was developed, providing deeper insights into the material’s condition. Results indicate that the natural dredged material can be utilized as a filler in interlocking blocks or mortar. Additionally, an alternative processing route involving calcination can enhance the material's reactivity, presenting opportunities for higher-value applications, although the energy costs must be considered. The calcination of 650 °C resulted in a higher pozzolanic index, increasing its reactivity. The study concludes that port dredging waste from this case study has significant potential for use in sustainable building material development.","PeriodicalId":501120,"journal":{"name":"Journal of Materials Research and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jmrt.2024.09.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Port operation activities have been expanding globally, driven by globalization and increased cargo handling. Developing countries, such as Brazil, China, and India, are experiencing a rise in the construction of modern ports. Recently, sustainability concepts have been integrated into maritime transportation, focusing on the construction and management of ports and exploring the reuse of waste generated during operations. The main objective of this study is to evaluate the potential application of the dredging material of port of açu (DMPA), sourced from a new private port in Rio de Janeiro State, Brazil, in developing sustainable construction materials. The dredged material, collected from the bottom of the shipping canal was physically, chemically, and morphologically characterized to compare its results with the processing and application requirements for alternative materials. A standard method for primary processing was developed, providing deeper insights into the material’s condition. Results indicate that the natural dredged material can be utilized as a filler in interlocking blocks or mortar. Additionally, an alternative processing route involving calcination can enhance the material's reactivity, presenting opportunities for higher-value applications, although the energy costs must be considered. The calcination of 650 °C resulted in a higher pozzolanic index, increasing its reactivity. The study concludes that port dredging waste from this case study has significant potential for use in sustainable building material development.
港口疏浚废物的特性分析,以确定其作为土木建筑材料的潜在用途:巴西案例研究
在全球化和货物吞吐量增加的推动下,港口运营活动在全球范围内不断扩大。巴西、中国和印度等发展中国家正在兴建现代化港口。最近,可持续发展概念已被纳入海运,重点关注港口的建设和管理,并探索如何重新利用运营过程中产生的废物。本研究的主要目的是评估从巴西里约热内卢州一个新的私人港口获取的阿苏港疏浚材料(DMPA)在开发可持续建筑材料方面的应用潜力。对从运河底部收集的疏浚材料进行了物理、化学和形态鉴定,以便将其结果与替代材料的加工和应用要求进行比较。制定了初级加工的标准方法,以便更深入地了解材料的状况。结果表明,天然疏浚材料可用作连锁砌块或砂浆的填料。此外,涉及煅烧的另一种加工方法可以提高材料的反应性,为更高价值的应用提供机会,但必须考虑能源成本。煅烧温度为 650 °C,可获得更高的水胶指数,从而提高其反应活性。研究得出结论,本案例研究中的港口疏浚废物在可持续建筑材料开发方面具有巨大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信