Uyen Tran, Andrew J Streets, Devon Smith, Eva Decker, Annemarie Kirschfink, Lahoucine Izem, Jessie Hassey, Briana Ruthland, Manoj K Valluru, Jan Hinrich Bräsen, Elisabeth Ott, Daniel Epting, Tobias Eisenberger, Albert CM Ong, Carsten Bergmann, Oliver Wessely
{"title":"BICC1 Interacts with PKD1 and PKD2 to Drive Cystogenesis in ADPKD","authors":"Uyen Tran, Andrew J Streets, Devon Smith, Eva Decker, Annemarie Kirschfink, Lahoucine Izem, Jessie Hassey, Briana Ruthland, Manoj K Valluru, Jan Hinrich Bräsen, Elisabeth Ott, Daniel Epting, Tobias Eisenberger, Albert CM Ong, Carsten Bergmann, Oliver Wessely","doi":"10.1101/2024.08.27.608867","DOIUrl":null,"url":null,"abstract":"Background: Autosomal dominant polycystic kidney disease (ADPKD) is primarily of adult-onset and caused by pathogenic variants in PKD1 or PKD2. Yet, disease expression is highly variable and includes very early-onset PKD presentations in utero or infancy. In animal models, the RNA-binding molecule Bicc1 has been shown to play a crucial role in the pathogenesis of PKD. Methods: To study the interaction between BICC1, PKD1 and PKD2 we combined biochemical approaches, knockout studies in mice and Xenopus, genetic engineered human kidney cells as well as genetic association studies in a large ADPKD cohort. Results: We first demonstrated that BICC1 physically binds to the proteins Polycystin-1 and -2 encoded by PKD1 and PKD2 via distinct protein domains. Furthermore, PKD was aggravated in loss-of-function studies in Xenopus and mouse models resulting in more severe disease when Bicc1 was depleted in conjunction with Pkd1 or Pkd2. Finally, in a large human patient cohort, we identified a sibling pair with a homozygous BICC1 variant and patients with very early onset PKD (VEO-PKD) that exhibited compound heterozygosity of BICC1 in conjunction with PKD1 and PKD2 variants. Genome editing demonstrated that these BICC1 variants were hypomorphic in nature and impacted disease-relevant signaling pathways. Conclusions: These findings support the hypothesis that BICC1 cooperates functionally with PKD1 and PKD2, and that BICC1 variants may aggravate disease severity highlighting RNA metabolism as an important new concept for disease modification in ADPKD.","PeriodicalId":501246,"journal":{"name":"bioRxiv - Genetics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.27.608867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Autosomal dominant polycystic kidney disease (ADPKD) is primarily of adult-onset and caused by pathogenic variants in PKD1 or PKD2. Yet, disease expression is highly variable and includes very early-onset PKD presentations in utero or infancy. In animal models, the RNA-binding molecule Bicc1 has been shown to play a crucial role in the pathogenesis of PKD. Methods: To study the interaction between BICC1, PKD1 and PKD2 we combined biochemical approaches, knockout studies in mice and Xenopus, genetic engineered human kidney cells as well as genetic association studies in a large ADPKD cohort. Results: We first demonstrated that BICC1 physically binds to the proteins Polycystin-1 and -2 encoded by PKD1 and PKD2 via distinct protein domains. Furthermore, PKD was aggravated in loss-of-function studies in Xenopus and mouse models resulting in more severe disease when Bicc1 was depleted in conjunction with Pkd1 or Pkd2. Finally, in a large human patient cohort, we identified a sibling pair with a homozygous BICC1 variant and patients with very early onset PKD (VEO-PKD) that exhibited compound heterozygosity of BICC1 in conjunction with PKD1 and PKD2 variants. Genome editing demonstrated that these BICC1 variants were hypomorphic in nature and impacted disease-relevant signaling pathways. Conclusions: These findings support the hypothesis that BICC1 cooperates functionally with PKD1 and PKD2, and that BICC1 variants may aggravate disease severity highlighting RNA metabolism as an important new concept for disease modification in ADPKD.