Catamorphic Abstractions for Constrained Horn Clause Satisfiability

Emanuele De AngelisIASI-CNR, Rome, Italy, Fabio FioravantiDEc, University 'G. d'Annunzio', Chieti-Pescara, Italy, Alberto PettorossiDICII, University of Rome 'Tor Vergata', Italy, Maurizio ProiettiIASI-CNR, Rome, Italy
{"title":"Catamorphic Abstractions for Constrained Horn Clause Satisfiability","authors":"Emanuele De AngelisIASI-CNR, Rome, Italy, Fabio FioravantiDEc, University 'G. d'Annunzio', Chieti-Pescara, Italy, Alberto PettorossiDICII, University of Rome 'Tor Vergata', Italy, Maurizio ProiettiIASI-CNR, Rome, Italy","doi":"arxiv-2408.06988","DOIUrl":null,"url":null,"abstract":"Catamorphisms are functions that are recursively defined on list and trees\nand, in general, on Algebraic Data Types (ADTs), and are often used to compute\nsuitable abstractions of programs that manipulate ADTs. Examples of\ncatamorphisms include functions that compute size of lists, orderedness of\nlists, and height of trees. It is well known that program properties specified\nthrough catamorphisms can be proved by showing the satisfiability of suitable\nsets of Constrained Horn Clauses (CHCs). We address the problem of checking the\nsatisfiability of those sets of CHCs, and we propose a method for transforming\nsets of CHCs into equisatisfiable sets where catamorphisms are no longer\npresent. As a consequence, clauses with catamorphisms can be handled without\nextending the satisfiability algorithms used by existing CHC solvers. Through\nan experimental evaluation on a non-trivial benchmark consisting of many list\nand tree processing algorithms expressed as sets of CHCs, we show that our\ntechnique is indeed effective and significantly enhances the performance of\nstate-of-the-art CHC solvers.","PeriodicalId":501197,"journal":{"name":"arXiv - CS - Programming Languages","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Catamorphisms are functions that are recursively defined on list and trees and, in general, on Algebraic Data Types (ADTs), and are often used to compute suitable abstractions of programs that manipulate ADTs. Examples of catamorphisms include functions that compute size of lists, orderedness of lists, and height of trees. It is well known that program properties specified through catamorphisms can be proved by showing the satisfiability of suitable sets of Constrained Horn Clauses (CHCs). We address the problem of checking the satisfiability of those sets of CHCs, and we propose a method for transforming sets of CHCs into equisatisfiable sets where catamorphisms are no longer present. As a consequence, clauses with catamorphisms can be handled without extending the satisfiability algorithms used by existing CHC solvers. Through an experimental evaluation on a non-trivial benchmark consisting of many list and tree processing algorithms expressed as sets of CHCs, we show that our technique is indeed effective and significantly enhances the performance of state-of-the-art CHC solvers.
受限角句子可满足性的拟态抽象
类变形是对列表和树以及一般的代数数据类型(ADT)进行递归定义的函数,通常用于计算操作 ADT 的程序的合适抽象。变形的例子包括计算列表大小、列表有序性和树高度的函数。众所周知,通过变形指定的程序属性可以通过证明约束角子句(CHC)的合适集合的可满足性来证明。我们解决了检查这些 CHCs 集的可满足性的问题,并提出了一种方法,用于将 CHCs 集转化为不再存在 catamorphism 的等可满足集。因此,我们可以在不改变现有 CHC 求解器所使用的可满足性算法的情况下,处理具有猫态性的子句。通过在一个由许多以 CHC 集表示的列表和树处理算法组成的非难基准上进行实验评估,我们证明了我们的技术确实有效,并显著提高了最先进的 CHC 求解器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信