Inference Plans for Hybrid Particle Filtering

Ellie Y. Cheng, Eric Atkinson, Guillaume Baudart, Louis Mandel, Michael Carbin
{"title":"Inference Plans for Hybrid Particle Filtering","authors":"Ellie Y. Cheng, Eric Atkinson, Guillaume Baudart, Louis Mandel, Michael Carbin","doi":"arxiv-2408.11283","DOIUrl":null,"url":null,"abstract":"Advanced probabilistic programming languages (PPLs) use hybrid inference\nsystems to combine symbolic exact inference and Monte Carlo methods to improve\ninference performance. These systems use heuristics to partition random\nvariables within the program into variables that are encoded symbolically and\nvariables that are encoded with sampled values, and the heuristics are not\nnecessarily aligned with the performance evaluation metrics used by the\ndeveloper. In this work, we present inference plans, a programming interface\nthat enables developers to control the partitioning of random variables during\nhybrid particle filtering. We further present Siren, a new PPL that enables\ndevelopers to use annotations to specify inference plans the inference system\nmust implement. To assist developers with statically reasoning about whether an\ninference plan can be implemented, we present an abstract-interpretation-based\nstatic analysis for Siren for determining inference plan satisfiability. We\nprove the analysis is sound with respect to Siren's semantics. Our evaluation\napplies inference plans to three different hybrid particle filtering algorithms\non a suite of benchmarks and shows that the control provided by inference plans\nenables speed ups of 1.76x on average and up to 206x to reach target accuracy,\ncompared to the inference plans implemented by default heuristics; the results\nalso show that inference plans improve accuracy by 1.83x on average and up to\n595x with less or equal runtime, compared to the default inference plans. We\nfurther show that the static analysis is precise in practice, identifying all\nsatisfiable inference plans in 27 out of the 33 benchmark-algorithm\ncombinations.","PeriodicalId":501197,"journal":{"name":"arXiv - CS - Programming Languages","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.11283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced probabilistic programming languages (PPLs) use hybrid inference systems to combine symbolic exact inference and Monte Carlo methods to improve inference performance. These systems use heuristics to partition random variables within the program into variables that are encoded symbolically and variables that are encoded with sampled values, and the heuristics are not necessarily aligned with the performance evaluation metrics used by the developer. In this work, we present inference plans, a programming interface that enables developers to control the partitioning of random variables during hybrid particle filtering. We further present Siren, a new PPL that enables developers to use annotations to specify inference plans the inference system must implement. To assist developers with statically reasoning about whether an inference plan can be implemented, we present an abstract-interpretation-based static analysis for Siren for determining inference plan satisfiability. We prove the analysis is sound with respect to Siren's semantics. Our evaluation applies inference plans to three different hybrid particle filtering algorithms on a suite of benchmarks and shows that the control provided by inference plans enables speed ups of 1.76x on average and up to 206x to reach target accuracy, compared to the inference plans implemented by default heuristics; the results also show that inference plans improve accuracy by 1.83x on average and up to 595x with less or equal runtime, compared to the default inference plans. We further show that the static analysis is precise in practice, identifying all satisfiable inference plans in 27 out of the 33 benchmark-algorithm combinations.
混合粒子滤波的推理计划
高级概率编程语言(PPL)使用混合推理系统,将符号精确推理与蒙特卡罗方法相结合,以提高推理性能。这些系统使用启发式方法将程序中的随机变量分为符号编码变量和采样值编码变量,而启发式方法并不一定与开发人员使用的性能评估指标相一致。在这项工作中,我们提出了推理计划,这是一种编程接口,能让开发人员在混合粒子滤波过程中控制随机变量的分割。我们进一步介绍了 Siren,它是一种新的 PPL,能让开发者使用注释来指定推理系统必须实现的推理计划。为了帮助开发人员静态推理推理计划是否可以实现,我们为 Siren 提出了一种基于抽象解释的静态分析方法,用于确定推理计划的可满足性。我们证明该分析在 Siren 的语义方面是合理的。我们的评估在一套基准测试中将推理计划应用于三种不同的混合粒子过滤算法,结果表明,与默认启发式实现的推理计划相比,推理计划提供的控制使达到目标精度的速度平均提高了 1.76 倍,最高提高了 206 倍;结果还表明,与默认推理计划相比,推理计划的精度平均提高了 1.83 倍,最高提高了 595 倍,而运行时间更短或相等。我们进一步证明了静态分析在实践中的精确性,在 33 个基准算法组合中,有 27 个能识别出所有可满足的推理计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信