Growth Mechanism of Monolayer on the Top Facet of Ga-Catalyzed GaAs and GaP Nanowires

IF 0.8 4区 物理与天体物理 Q4 PHYSICS, APPLIED
A. A. Koryakin, Yu. A. Eremeev, S. V. Fedina, V. V. Fedorov
{"title":"Growth Mechanism of Monolayer on the Top Facet of Ga-Catalyzed GaAs and GaP Nanowires","authors":"A. A. Koryakin, Yu. A. Eremeev, S. V. Fedina, V. V. Fedorov","doi":"10.1134/s1063785023170133","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b>—The growth mechanism of monolayer on the top facet of Ga-catalyzed GaAs and GaP nanowires is investigated. Within the framework of a theoretical model, the maximal monolayer coverage due to the material in the catalyst droplet, the nanowire growth rate and the content of group V atoms in the droplet are found depending on the growth conditions. The estimates of the phosphorus re-evaporation coefficient from neighboring nanowires and substrate are obtained by comparing the theoretical and experimental growth rate of Ga-catalyzed GaP nanowires.</p>","PeriodicalId":784,"journal":{"name":"Technical Physics Letters","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063785023170133","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract—The growth mechanism of monolayer on the top facet of Ga-catalyzed GaAs and GaP nanowires is investigated. Within the framework of a theoretical model, the maximal monolayer coverage due to the material in the catalyst droplet, the nanowire growth rate and the content of group V atoms in the droplet are found depending on the growth conditions. The estimates of the phosphorus re-evaporation coefficient from neighboring nanowires and substrate are obtained by comparing the theoretical and experimental growth rate of Ga-catalyzed GaP nanowires.

Abstract Image

镓催化砷化镓和磷化镓纳米线顶面单层的生长机制
摘要 研究了镓催化砷化镓和磷化镓纳米线顶面单层的生长机理。在理论模型的框架内,发现了催化剂液滴中材料导致的最大单层覆盖率、纳米线生长速率以及液滴中 V 族原子的含量取决于生长条件。通过比较镓催化 GaP 纳米线的理论生长率和实验生长率,得到了邻近纳米线和基底磷再蒸发系数的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Technical Physics Letters
Technical Physics Letters 物理-物理:应用
CiteScore
1.50
自引率
0.00%
发文量
44
审稿时长
2-4 weeks
期刊介绍: Technical Physics Letters is a companion journal to Technical Physics and offers rapid publication of developments in theoretical and experimental physics with potential technological applications. Recent emphasis has included many papers on gas lasers and on lasing in semiconductors, as well as many reports on high Tc superconductivity. The excellent coverage of plasma physics seen in the parent journal, Technical Physics, is also present here with quick communication of developments in theoretical and experimental work in all fields with probable technical applications. Topics covered are basic and applied physics; plasma physics; solid state physics; physical electronics; accelerators; microwave electron devices; holography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信