Hussein T. El-Badrawy, Abbas M. Abbas, Usama Massoud, Tamer Abu-Alam, Hamed A. Alrefaee, Saif M. Abo Khashaba, Mostafa Nagy
{"title":"Integrated approach-based groundwater mapping in sohag governorate, upper Egypt, using remote sensing and aeromagnetic data","authors":"Hussein T. El-Badrawy, Abbas M. Abbas, Usama Massoud, Tamer Abu-Alam, Hamed A. Alrefaee, Saif M. Abo Khashaba, Mostafa Nagy","doi":"10.3389/feart.2024.1456055","DOIUrl":null,"url":null,"abstract":"IntroductionGroundwater demand has been considerably heightened due to rapid urban growth, specifically in arid areas that rely primarily on groundwater. This study aims to utilize remote sensing and aeromagnetic data, combined with the Analytic Hierarchy Process (AHP) based GIS, to evaluate potential groundwater zones in the Sohag area, Egypt.MethodsNine thematic layers, including soil moisture, rainfall, lithology, normalized difference vegetation index (NDVI), drainage density, lineament density, slope, and land use/land cover, were developed using various remote sensing datasets. Besides the remote sensing-derived thematic layers, a geophysics-derived thematic layer represented by the RTP aeromagnetic map was included. The aeromagnetic data were analyzed and interpreted to outline the subsurface structure affecting groundwater storage and flow. Also, the aeromagnetic data analysis helps estimate the basement depth that constitutes the Nubian Aquifer’s base and identifies regions with considerable thick sedimentary deposits and significant water reserves.Results and discussionThe groundwater potentiality map was consistent with production wells in the area, and sites for drilling new wells were predicted, especially in the Nile Valley around the Tahta, El-Hamimia, and west Sohag cities. The most promising sites are clustered along the Nile Valley, and the study area’s northwestern and northeastern parts. The results indicate that the predominant magnetic structural trends are NW-SE, NE-SW, N-S, and E-W, which contribute to the formation of a series of subsurface horsts (H) and grabens (G). Three main basins (A, B, and C) were identified as the most profound areas. These basins represent the most promising areas for groundwater accumulation, making them attractive for future hydrogeological exploration. This integrated approach strongly offers a powerful and effective tool to assist in developing an appropriate plan to manage groundwater in arid regions.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"162 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1456055","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
IntroductionGroundwater demand has been considerably heightened due to rapid urban growth, specifically in arid areas that rely primarily on groundwater. This study aims to utilize remote sensing and aeromagnetic data, combined with the Analytic Hierarchy Process (AHP) based GIS, to evaluate potential groundwater zones in the Sohag area, Egypt.MethodsNine thematic layers, including soil moisture, rainfall, lithology, normalized difference vegetation index (NDVI), drainage density, lineament density, slope, and land use/land cover, were developed using various remote sensing datasets. Besides the remote sensing-derived thematic layers, a geophysics-derived thematic layer represented by the RTP aeromagnetic map was included. The aeromagnetic data were analyzed and interpreted to outline the subsurface structure affecting groundwater storage and flow. Also, the aeromagnetic data analysis helps estimate the basement depth that constitutes the Nubian Aquifer’s base and identifies regions with considerable thick sedimentary deposits and significant water reserves.Results and discussionThe groundwater potentiality map was consistent with production wells in the area, and sites for drilling new wells were predicted, especially in the Nile Valley around the Tahta, El-Hamimia, and west Sohag cities. The most promising sites are clustered along the Nile Valley, and the study area’s northwestern and northeastern parts. The results indicate that the predominant magnetic structural trends are NW-SE, NE-SW, N-S, and E-W, which contribute to the formation of a series of subsurface horsts (H) and grabens (G). Three main basins (A, B, and C) were identified as the most profound areas. These basins represent the most promising areas for groundwater accumulation, making them attractive for future hydrogeological exploration. This integrated approach strongly offers a powerful and effective tool to assist in developing an appropriate plan to manage groundwater in arid regions.
期刊介绍:
Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet.
This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet.
The journal welcomes outstanding contributions in any domain of Earth Science.
The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission.
General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.