The role of data embedding in quantum autoencoders for improved anomaly detection

Jack Y. Araz, Michael Spannowsky
{"title":"The role of data embedding in quantum autoencoders for improved anomaly detection","authors":"Jack Y. Araz, Michael Spannowsky","doi":"arxiv-2409.04519","DOIUrl":null,"url":null,"abstract":"The performance of Quantum Autoencoders (QAEs) in anomaly detection tasks is\ncritically dependent on the choice of data embedding and ansatz design. This\nstudy explores the effects of three data embedding techniques, data\nre-uploading, parallel embedding, and alternate embedding, on the\nrepresentability and effectiveness of QAEs in detecting anomalies. Our findings\nreveal that even with relatively simple variational circuits, enhanced data\nembedding strategies can substantially improve anomaly detection accuracy and\nthe representability of underlying data across different datasets. Starting\nwith toy examples featuring low-dimensional data, we visually demonstrate the\neffect of different embedding techniques on the representability of the model.\nWe then extend our analysis to complex, higher-dimensional datasets,\nhighlighting the significant impact of embedding methods on QAE performance.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of Quantum Autoencoders (QAEs) in anomaly detection tasks is critically dependent on the choice of data embedding and ansatz design. This study explores the effects of three data embedding techniques, data re-uploading, parallel embedding, and alternate embedding, on the representability and effectiveness of QAEs in detecting anomalies. Our findings reveal that even with relatively simple variational circuits, enhanced data embedding strategies can substantially improve anomaly detection accuracy and the representability of underlying data across different datasets. Starting with toy examples featuring low-dimensional data, we visually demonstrate the effect of different embedding techniques on the representability of the model. We then extend our analysis to complex, higher-dimensional datasets, highlighting the significant impact of embedding methods on QAE performance.
量子自动编码器中的数据嵌入对改进异常检测的作用
量子自动编码器(QAE)在异常检测任务中的性能关键取决于数据嵌入和ansatz设计的选择。本研究探讨了三种数据嵌入技术(数据上载、并行嵌入和交替嵌入)对量子自动编码器检测异常的可呈现性和有效性的影响。我们的研究结果表明,即使使用相对简单的变分电路,增强型数据嵌入策略也能大幅提高异常检测的准确性,以及不同数据集基础数据的可表示性。从低维数据的玩具示例开始,我们直观地展示了不同嵌入技术对模型可表示性的影响,然后我们将分析扩展到复杂的高维数据集,强调了嵌入方法对 QAE 性能的重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信