The spectral $ζ$-function for quasi-regular Sturm--Liouville operators

Guglielmo Fucci, Mateusz Piorkowski, Jonathan Stanfill
{"title":"The spectral $ζ$-function for quasi-regular Sturm--Liouville operators","authors":"Guglielmo Fucci, Mateusz Piorkowski, Jonathan Stanfill","doi":"arxiv-2409.06922","DOIUrl":null,"url":null,"abstract":"In this work we analyze the spectral $\\zeta$-function associated with the\nself-adjoint extensions, $T_{A,B}$, of quasi-regular Sturm--Liouville operators\nthat are bounded from below. By utilizing the Green's function formalism, we\nfind the characteristic function which implicitly provides the eigenvalues\nassociated with a given self-adjoint extension $T_{A,B}$. The characteristic\nfunction is then employed to construct a contour integral representation for\nthe spectral $\\zeta$-function of $T_{A,B}$. By assuming a general form for the\nasymptotic expansion of the characteristic function, we describe the analytic\ncontinuation of the $\\zeta$-function to a larger region of the complex plane.\nWe also present a method for computing the value of the spectral\n$\\zeta$-function of $T_{A,B}$ at all positive integers. We provide two examples\nto illustrate the methods developed in the paper: the generalized Bessel and\nLegendre operators. We show that in the case of the generalized Bessel\noperator, the spectral $\\zeta$-function develops a branch point at the origin,\nwhile in the case of the Legendre operator it presents, more remarkably, branch\npoints at every nonpositive integer value of $s$.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we analyze the spectral $\zeta$-function associated with the self-adjoint extensions, $T_{A,B}$, of quasi-regular Sturm--Liouville operators that are bounded from below. By utilizing the Green's function formalism, we find the characteristic function which implicitly provides the eigenvalues associated with a given self-adjoint extension $T_{A,B}$. The characteristic function is then employed to construct a contour integral representation for the spectral $\zeta$-function of $T_{A,B}$. By assuming a general form for the asymptotic expansion of the characteristic function, we describe the analytic continuation of the $\zeta$-function to a larger region of the complex plane. We also present a method for computing the value of the spectral $\zeta$-function of $T_{A,B}$ at all positive integers. We provide two examples to illustrate the methods developed in the paper: the generalized Bessel and Legendre operators. We show that in the case of the generalized Bessel operator, the spectral $\zeta$-function develops a branch point at the origin, while in the case of the Legendre operator it presents, more remarkably, branch points at every nonpositive integer value of $s$.
准规则斯特姆--利乌维尔算子的谱$ζ$函数
在这项工作中,我们分析了与自下有界的准规则斯特姆--利乌维尔算子的自交扩展 $T_{A,B}$ 相关的谱 $\zeta$-函数。通过利用格林函数形式主义,我们找到了特征函数,它隐含地提供了与给定自交扩展 $T_{A,B}$ 相关的特征值。然后,利用特征函数为 $T_{A,B}$ 的谱 $/zeta$ 函数构造一个等高线积分表示。通过假设特征函数渐近展开的一般形式,我们描述了 $\zeta$ 函数到复平面更大区域的解析延续。我们提供了两个例子来说明本文所开发的方法:广义贝塞尔算子和列根德算子。我们证明,在广义贝塞尔算子的情况下,谱$\zeta$函数在原点处会出现一个分支点,而在勒让德算子的情况下,更引人注目的是,它在$s$的每一个非正整数值处都会出现分支点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信