Dirichlet metric measure spaces: spectrum, irreducibility, and small deviations

Marco Carfagnini, Maria Gordina, Alexander Teplyaev
{"title":"Dirichlet metric measure spaces: spectrum, irreducibility, and small deviations","authors":"Marco Carfagnini, Maria Gordina, Alexander Teplyaev","doi":"arxiv-2409.07425","DOIUrl":null,"url":null,"abstract":"In the context of irreducible ultracontractive Dirichlet metric measure\nspaces, we demonstrate the discreteness of the Laplacian spectrum and the\ncorresponding diffusion's irreducibility in connected open sets, without\nassuming regularity of the boundary. This general result can be applied to\nstudy various questions, including those related to small deviations of the\ndiffusion and generalized heat content. Our examples include Riemannian and\nsub-Riemannian manifolds, as well as non-smooth and fractal spaces.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the context of irreducible ultracontractive Dirichlet metric measure spaces, we demonstrate the discreteness of the Laplacian spectrum and the corresponding diffusion's irreducibility in connected open sets, without assuming regularity of the boundary. This general result can be applied to study various questions, including those related to small deviations of the diffusion and generalized heat content. Our examples include Riemannian and sub-Riemannian manifolds, as well as non-smooth and fractal spaces.
狄利克特度量空间:谱、不可还原性和小偏差
在不可还原超收缩狄利克特度量空间的背景下,我们证明了拉普拉斯频谱的离散性和相应扩散在连通开集中的不可还原性,而无需假定边界的规则性。这一一般性结果可用于研究各种问题,包括与扩散的小偏差和广义热含量有关的问题。我们的例子包括黎曼流形和子黎曼流形,以及非光滑和分形空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信