Spectrum of the perturbed Landau-Dirac operator

Vincent Bruneau, Pablo Miranda
{"title":"Spectrum of the perturbed Landau-Dirac operator","authors":"Vincent Bruneau, Pablo Miranda","doi":"arxiv-2409.08218","DOIUrl":null,"url":null,"abstract":"In this article, we consider the Dirac operator with constant magnetic field\nin $\\mathbb R^2$. Its spectrum consists of eigenvalues of infinite\nmultiplicities, known as the Landau-Dirac levels. Under compactly supported\nperturbations, we study the distribution of the discrete eigenvalues near each\nLandau-Dirac level. Similarly to the Landau (Schr\\\"odinger) operator, we\ndemonstrate that a three-terms asymptotic formula holds for the eigenvalue\ncounting function. One of the main novelties of this work is the treatment of\nsome perturbations of variable sign. In this context we explore some remarkable\nphenomena related to the finiteness or infiniteness of the discrete\neigenvalues, which depend on the interplay of the different terms in the matrix\nperturbation.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider the Dirac operator with constant magnetic field in $\mathbb R^2$. Its spectrum consists of eigenvalues of infinite multiplicities, known as the Landau-Dirac levels. Under compactly supported perturbations, we study the distribution of the discrete eigenvalues near each Landau-Dirac level. Similarly to the Landau (Schr\"odinger) operator, we demonstrate that a three-terms asymptotic formula holds for the eigenvalue counting function. One of the main novelties of this work is the treatment of some perturbations of variable sign. In this context we explore some remarkable phenomena related to the finiteness or infiniteness of the discrete eigenvalues, which depend on the interplay of the different terms in the matrix perturbation.
扰动朗道-狄拉克算子的频谱
在本文中,我们将考虑在 $\mathbb R^2$ 中具有恒定磁场的狄拉克算子。它的频谱由无穷倍率的特征值组成,称为兰道-狄拉克级。在紧凑支撑的扰动下,我们研究了每个兰道-狄拉克级附近离散特征值的分布。与朗道(薛定谔)算子类似,我们证明了特征值计数函数的三项渐近公式是成立的。这项工作的主要创新之一是处理一些符号可变的扰动。在此背景下,我们探索了一些与离散特征值的有限性或无限性有关的显著现象,这些现象取决于矩阵扰动中不同项的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信