Perturbative diagonalization and spectral gaps of quasiperiodic operators on $\ell^2(\Z^d)$ with monotone potentials

Ilya Kachkovskiy, Leonid Parnovski, Roman Shterenberg
{"title":"Perturbative diagonalization and spectral gaps of quasiperiodic operators on $\\ell^2(\\Z^d)$ with monotone potentials","authors":"Ilya Kachkovskiy, Leonid Parnovski, Roman Shterenberg","doi":"arxiv-2408.05650","DOIUrl":null,"url":null,"abstract":"We obtain a perturbative proof of localization for quasiperiodic operators on\n$\\ell^2(\\Z^d)$ with one-dimensional phase space and monotone sampling\nfunctions, in the regime of small hopping. The proof is based on an iterative\nscheme which can be considered as a local (in the energy and the phase) and\nconvergent version of KAM-type diagonalization, whose result is a covariant\nfamily of uniformly localized eigenvalues and eigenvectors. We also proof that\nthe spectra of such operators contain infinitely many gaps.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain a perturbative proof of localization for quasiperiodic operators on $\ell^2(\Z^d)$ with one-dimensional phase space and monotone sampling functions, in the regime of small hopping. The proof is based on an iterative scheme which can be considered as a local (in the energy and the phase) and convergent version of KAM-type diagonalization, whose result is a covariant family of uniformly localized eigenvalues and eigenvectors. We also proof that the spectra of such operators contain infinitely many gaps.
具有单调势的$\ell^2(\Z^d)$上准周期算子的惯性对角化和谱隙
我们得到了关于$\ell^2(\Z^d)$上具有一维相空间和单调采样函数的准周期算子在小跳变制度下的局部化的微扰证明。证明基于一个迭代方案,该方案可视为 KAM 型对角化的局部(能量和相位)和收敛版本,其结果是一个均匀局部化特征值和特征向量的协方差族。我们还证明了这类算子的谱包含无穷多个间隙。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信