Inverse Sturm-Liouville problem with singular potential and spectral parameter in the boundary conditions

E. E. Chitorkin, N. P. Bondarenko
{"title":"Inverse Sturm-Liouville problem with singular potential and spectral parameter in the boundary conditions","authors":"E. E. Chitorkin, N. P. Bondarenko","doi":"arxiv-2409.02254","DOIUrl":null,"url":null,"abstract":"This paper deals with the Sturm-Liouville problem that feature distribution\npotential, polynomial dependence on the spectral parameter in the first\nboundary condition, and analytical dependence, in the second one. We study an\ninverse spectral problem that consists in the recovery of the potential and the\npolynomials from some part of the spectrum. We for the first time prove local\nsolvability and stability for this type of inverse problems. Furthermore, the\nnecessary and sufficient conditions on the given subspectrum for the uniqueness\nof solution are found, and a reconstruction procedure is developed. Our main\nresults can be applied to a variety of partial inverse problems. This is\nillustrated by an example of the Hochstadt-Lieberman-type problem with\npolynomial dependence on the spectral parameter in the both boundary\nconditions.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the Sturm-Liouville problem that feature distribution potential, polynomial dependence on the spectral parameter in the first boundary condition, and analytical dependence, in the second one. We study an inverse spectral problem that consists in the recovery of the potential and the polynomials from some part of the spectrum. We for the first time prove local solvability and stability for this type of inverse problems. Furthermore, the necessary and sufficient conditions on the given subspectrum for the uniqueness of solution are found, and a reconstruction procedure is developed. Our main results can be applied to a variety of partial inverse problems. This is illustrated by an example of the Hochstadt-Lieberman-type problem with polynomial dependence on the spectral parameter in the both boundary conditions.
具有奇异势和边界条件谱参数的反斯特姆-刘维尔问题
本文讨论的斯特姆-利乌维尔问题具有分布势的特征,在第一边界条件中与谱参数的多项式相关,在第二边界条件中与分析相关。我们研究的逆谱问题包括从谱的某些部分恢复势和多项式。我们首次证明了这类逆问题的局部可变性和稳定性。此外,我们还找到了在给定子频谱上求解唯一性的必要条件和充分条件,并开发了一种重构程序。我们的主要结果可应用于各种部分逆问题。以霍赫斯塔特-利伯曼(Hochstadt-Lieberman)类型问题为例说明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信