Mason McVicker, Lauren Ervin, Yongzhi Yang, Kenneth G. Ricks
{"title":"Comparison of lidar semantic segmentation performance on the structured SemanticKITTI and off-road RELLIS-3D datasets","authors":"Mason McVicker, Lauren Ervin, Yongzhi Yang, Kenneth G. Ricks","doi":"10.1007/s41315-024-00376-5","DOIUrl":null,"url":null,"abstract":"<p>Existing lidar-based semantic segmentation algorithms and datasets focus on autonomous vehicles operating in urban environments. This has greatly improved the safety and reliability of these autonomous vehicles in predictable scenery. A new dataset provides lidar data focusing on off-road environments as seen by autonomous ground vehicles, ushering in a new era of off-road exploration capabilities. To the best of our knowledge, no new algorithms have been developed specifically for this unstructured environment. To gain an understanding of how existing algorithms perform in an off-road environment, we assess the baseline performance of four algorithms, KPConv, SalsaNext, Cylinder3D, and SphereFormer, on a commonly used on-road dataset, SemanticKITTI. We then compare the results with an off-road dataset, RELLIS-3D. We discuss the degradation of each algorithm on the off-road dataset and investigate potential causes such as class imbalance, inconsistencies in the labeled data, and the inherent difficulty of segmenting off-road environments. We present the strengths and weaknesses of each algorithm’s segmentation abilities and provide a comparison of the runtime of each algorithm for real-time capabilities. This is crucial for identifying what network architecture features are potentially the most beneficial for unstructured scenes. A robust, open-source software implementation via docker containers and bash scripts provides simple, repeatable execution of all algorithm training and evaluations. All code is publicly available at https://github.com/UA-Lidar-Segmentation-Research.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":"158 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Robotics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41315-024-00376-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Existing lidar-based semantic segmentation algorithms and datasets focus on autonomous vehicles operating in urban environments. This has greatly improved the safety and reliability of these autonomous vehicles in predictable scenery. A new dataset provides lidar data focusing on off-road environments as seen by autonomous ground vehicles, ushering in a new era of off-road exploration capabilities. To the best of our knowledge, no new algorithms have been developed specifically for this unstructured environment. To gain an understanding of how existing algorithms perform in an off-road environment, we assess the baseline performance of four algorithms, KPConv, SalsaNext, Cylinder3D, and SphereFormer, on a commonly used on-road dataset, SemanticKITTI. We then compare the results with an off-road dataset, RELLIS-3D. We discuss the degradation of each algorithm on the off-road dataset and investigate potential causes such as class imbalance, inconsistencies in the labeled data, and the inherent difficulty of segmenting off-road environments. We present the strengths and weaknesses of each algorithm’s segmentation abilities and provide a comparison of the runtime of each algorithm for real-time capabilities. This is crucial for identifying what network architecture features are potentially the most beneficial for unstructured scenes. A robust, open-source software implementation via docker containers and bash scripts provides simple, repeatable execution of all algorithm training and evaluations. All code is publicly available at https://github.com/UA-Lidar-Segmentation-Research.
期刊介绍:
The International Journal of Intelligent Robotics and Applications (IJIRA) fosters the dissemination of new discoveries and novel technologies that advance developments in robotics and their broad applications. This journal provides a publication and communication platform for all robotics topics, from the theoretical fundamentals and technological advances to various applications including manufacturing, space vehicles, biomedical systems and automobiles, data-storage devices, healthcare systems, home appliances, and intelligent highways. IJIRA welcomes contributions from researchers, professionals and industrial practitioners. It publishes original, high-quality and previously unpublished research papers, brief reports, and critical reviews. Specific areas of interest include, but are not limited to:Advanced actuators and sensorsCollective and social robots Computing, communication and controlDesign, modeling and prototypingHuman and robot interactionMachine learning and intelligenceMobile robots and intelligent autonomous systemsMulti-sensor fusion and perceptionPlanning, navigation and localizationRobot intelligence, learning and linguisticsRobotic vision, recognition and reconstructionBio-mechatronics and roboticsCloud and Swarm roboticsCognitive and neuro roboticsExploration and security roboticsHealthcare, medical and assistive roboticsRobotics for intelligent manufacturingService, social and entertainment roboticsSpace and underwater robotsNovel and emerging applications