{"title":"Sensitivity and reliability comparisons of EWMA mean control chart based on robust scale estimators under non‐normal process: COVID data application","authors":"Nadia Saeed, Ala'a Mahmoud Falih Bataineh, Moustafa Omar Ahmed Abu‐Shawiesh, Firas Haddad","doi":"10.1002/qre.3649","DOIUrl":null,"url":null,"abstract":"Robust control charts are getting vital importance in statistical process control theory as they are insensitive to the departure from normality. Therefore, the main objective of current work is to determine the effects of non‐normal process on the Exponentially Weighted Moving Average (EWMA) control chart. To achieve this goal, the sensitivity and reliability comparisons are made under the non‐normal process by comparing five robust M‐scale estimators, suggested in literature to modify the EWMA control limits for monitoring process mean and on the basis of percentile bootstrap estimator. The paper addresses the run length (RL) distribution of a robust EWMA control chart under the non‐normal process for which the exponential distribution is used as non‐normal process. The standard deviation of RL, out‐of‐control average run length (ARL), and shift detection probabilities are examined to assess the sensitivity and reliability of robust EWMA control charts for mean of monitoring process. The results of this research indicate that the classical EWMA control chart's performance is substantially impacted by the non‐normal distribution and the proposed EWMA control charts show higher sensitivity than classical one in terms of having smaller values of out‐of‐control ARLs. A real‐life example from the medical sciences field is provided the practical usage of the proposed control charts. The simulation analysis and practical example have shown that the suggested control charts are effective in quickly monitoring the out‐of‐control process.","PeriodicalId":56088,"journal":{"name":"Quality and Reliability Engineering International","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quality and Reliability Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/qre.3649","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Robust control charts are getting vital importance in statistical process control theory as they are insensitive to the departure from normality. Therefore, the main objective of current work is to determine the effects of non‐normal process on the Exponentially Weighted Moving Average (EWMA) control chart. To achieve this goal, the sensitivity and reliability comparisons are made under the non‐normal process by comparing five robust M‐scale estimators, suggested in literature to modify the EWMA control limits for monitoring process mean and on the basis of percentile bootstrap estimator. The paper addresses the run length (RL) distribution of a robust EWMA control chart under the non‐normal process for which the exponential distribution is used as non‐normal process. The standard deviation of RL, out‐of‐control average run length (ARL), and shift detection probabilities are examined to assess the sensitivity and reliability of robust EWMA control charts for mean of monitoring process. The results of this research indicate that the classical EWMA control chart's performance is substantially impacted by the non‐normal distribution and the proposed EWMA control charts show higher sensitivity than classical one in terms of having smaller values of out‐of‐control ARLs. A real‐life example from the medical sciences field is provided the practical usage of the proposed control charts. The simulation analysis and practical example have shown that the suggested control charts are effective in quickly monitoring the out‐of‐control process.
期刊介绍:
Quality and Reliability Engineering International is a journal devoted to practical engineering aspects of quality and reliability. A refereed technical journal published eight times per year, it covers the development and practical application of existing theoretical methods, research and industrial practices. Articles in the journal will be concerned with case studies, tutorial-type reviews and also with applications of new or well-known theory to the solution of actual quality and reliability problems in engineering.
Papers describing the use of mathematical and statistical tools to solve real life industrial problems are encouraged, provided that the emphasis is placed on practical applications and demonstrated case studies.
The scope of the journal is intended to include components, physics of failure, equipment and systems from the fields of electronic, electrical, mechanical and systems engineering. The areas of communications, aerospace, automotive, railways, shipboard equipment, control engineering and consumer products are all covered by the journal.
Quality and reliability of hardware as well as software are covered. Papers on software engineering and its impact on product quality and reliability are encouraged. The journal will also cover the management of quality and reliability in the engineering industry.
Special issues on a variety of key topics are published every year and contribute to the enhancement of Quality and Reliability Engineering International as a major reference in its field.