{"title":"Spider robot walking gait optimization using Jaya multi-objective optimization algorithm","authors":"Nguyen Tien Dat, Ho Pham Huy Anh","doi":"10.1007/s41315-024-00381-8","DOIUrl":null,"url":null,"abstract":"<p>The legs must move in a pattern to ensure that a four-legged robot walks organically and uses less energy. This is still a challenging issue today since four-legged creatures with incredibly complicated structures and precise motions are beyond the reach of current technology. This paper proposes a gait generation model for a spider robot that examines the guarantee between stability and speed. First, the robot spider’s movement rules are initiatively determined via four gait parameters—vertical step length, horizontal step length, leg lift, and knee bend. Meanwhile, the 3rd-order interpolation function determines the trajectory of the hips and feet at each leg. By applying analytical methods to solve the inverse kinematics issue, the orbits of the hips and feet at the four legs of the spider robot will be used to deduce twelve joint angle orbits at those locations. Then, a multi-objective function is proposed regarding both speed and stability based on the gait characteristics (gait parameters, CoP/ZMP trajectory) of the spider robot as to train the gait generation model by addressing the forward kinematics issue analytically. Finally, the multi-object MO-Jaya optimization technique is used to find four optimal gait parameters so that the spider robot performs a stable walking gait at the fastest speed. This proposal is implemented for the experiment B3-SBOT spider robot, simulation/experiment outcomes show that B3-SBOT moves at its fastest feasible speed while walking stably.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Robotics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41315-024-00381-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The legs must move in a pattern to ensure that a four-legged robot walks organically and uses less energy. This is still a challenging issue today since four-legged creatures with incredibly complicated structures and precise motions are beyond the reach of current technology. This paper proposes a gait generation model for a spider robot that examines the guarantee between stability and speed. First, the robot spider’s movement rules are initiatively determined via four gait parameters—vertical step length, horizontal step length, leg lift, and knee bend. Meanwhile, the 3rd-order interpolation function determines the trajectory of the hips and feet at each leg. By applying analytical methods to solve the inverse kinematics issue, the orbits of the hips and feet at the four legs of the spider robot will be used to deduce twelve joint angle orbits at those locations. Then, a multi-objective function is proposed regarding both speed and stability based on the gait characteristics (gait parameters, CoP/ZMP trajectory) of the spider robot as to train the gait generation model by addressing the forward kinematics issue analytically. Finally, the multi-object MO-Jaya optimization technique is used to find four optimal gait parameters so that the spider robot performs a stable walking gait at the fastest speed. This proposal is implemented for the experiment B3-SBOT spider robot, simulation/experiment outcomes show that B3-SBOT moves at its fastest feasible speed while walking stably.
期刊介绍:
The International Journal of Intelligent Robotics and Applications (IJIRA) fosters the dissemination of new discoveries and novel technologies that advance developments in robotics and their broad applications. This journal provides a publication and communication platform for all robotics topics, from the theoretical fundamentals and technological advances to various applications including manufacturing, space vehicles, biomedical systems and automobiles, data-storage devices, healthcare systems, home appliances, and intelligent highways. IJIRA welcomes contributions from researchers, professionals and industrial practitioners. It publishes original, high-quality and previously unpublished research papers, brief reports, and critical reviews. Specific areas of interest include, but are not limited to:Advanced actuators and sensorsCollective and social robots Computing, communication and controlDesign, modeling and prototypingHuman and robot interactionMachine learning and intelligenceMobile robots and intelligent autonomous systemsMulti-sensor fusion and perceptionPlanning, navigation and localizationRobot intelligence, learning and linguisticsRobotic vision, recognition and reconstructionBio-mechatronics and roboticsCloud and Swarm roboticsCognitive and neuro roboticsExploration and security roboticsHealthcare, medical and assistive roboticsRobotics for intelligent manufacturingService, social and entertainment roboticsSpace and underwater robotsNovel and emerging applications