Concentration behavior of normalized ground states for mass critical Kirchhoff equations in bounded domains

Shubin Yu, Chen Yang, Chun-Lei Tang
{"title":"Concentration behavior of normalized ground states for mass critical Kirchhoff equations in bounded domains","authors":"Shubin Yu, Chen Yang, Chun-Lei Tang","doi":"arxiv-2409.05130","DOIUrl":null,"url":null,"abstract":"In present paper, we study the limit behavior of normalized ground states for\nthe following mass critical Kirchhoff equation $$ \\left\\{\\begin{array}{ll}\n-(a+b\\int_{\\Omega}|\\nabla u|^2\\mathrm{d}x)\\Delta u+V(x)u=\\mu\nu+\\beta^*|u|^{\\frac{8}{3}}u &\\mbox{in}\\ {\\Omega}, \\\\[0.1cm] u=0&\\mbox{on}\\ {\\partial\\Omega}, \\\\[0.1cm] \\int_{\\Omega}|u|^2\\mathrm{d}x=1,\n\\\\[0.1cm] \\end{array} \\right. $$ where $a\\geq0$, $b>0$, the function $V(x)$ is\na trapping potential in a bounded domain $\\Omega\\subset\\mathbb R^3$,\n$\\beta^*:=\\frac{b}{2}|Q|_2^{\\frac{8}{3}}$ and $Q$ is the unique positive\nradially symmetric solution of equation $-2\\Delta\nu+\\frac{1}{3}u-|u|^{\\frac{8}{3}}u=0.$ We consider the existence of constraint\nminimizers for the associated energy functional involving the parameter $a$.\nThe minimizer corresponds to the normalized ground state of above problem, and\nit exists if and only if $a>0$. Moreover, when $V(x)$ attains its flattest\nglobal minimum at an inner point or only at the boundary of $\\Omega$, we\nanalyze the fine limit profiles of the minimizers as $a\\searrow 0$, including\nmass concentration at an inner point or near the boundary of $\\Omega$. In\nparticular, we further establish the local uniqueness of the minimizer if it is\nconcentrated at a unique inner point.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In present paper, we study the limit behavior of normalized ground states for the following mass critical Kirchhoff equation $$ \left\{\begin{array}{ll} -(a+b\int_{\Omega}|\nabla u|^2\mathrm{d}x)\Delta u+V(x)u=\mu u+\beta^*|u|^{\frac{8}{3}}u &\mbox{in}\ {\Omega}, \\[0.1cm] u=0&\mbox{on}\ {\partial\Omega}, \\[0.1cm] \int_{\Omega}|u|^2\mathrm{d}x=1, \\[0.1cm] \end{array} \right. $$ where $a\geq0$, $b>0$, the function $V(x)$ is a trapping potential in a bounded domain $\Omega\subset\mathbb R^3$, $\beta^*:=\frac{b}{2}|Q|_2^{\frac{8}{3}}$ and $Q$ is the unique positive radially symmetric solution of equation $-2\Delta u+\frac{1}{3}u-|u|^{\frac{8}{3}}u=0.$ We consider the existence of constraint minimizers for the associated energy functional involving the parameter $a$. The minimizer corresponds to the normalized ground state of above problem, and it exists if and only if $a>0$. Moreover, when $V(x)$ attains its flattest global minimum at an inner point or only at the boundary of $\Omega$, we analyze the fine limit profiles of the minimizers as $a\searrow 0$, including mass concentration at an inner point or near the boundary of $\Omega$. In particular, we further establish the local uniqueness of the minimizer if it is concentrated at a unique inner point.
有界域中质量临界基尔霍夫方程归一化基态的集中行为
在本文中,我们研究了以下质量临界基尔霍夫方程的归一化基态的极限行为 $$ \left\{\begin{array}{ll}-(a+b\int_\{Omega}|\nabla u|^2\mathrm{d}x)\Delta u+V(x)u=\muu+\beta^*|u|^{\frac{8}{3}}u &\mbox{in}\ {\Omega},\\[0.u=0&\mbox{on}\ {\partial\Omega},\[0.1cm] \int_{\Omega}|u|^2\mathrm{d}x=1,\[0.1cm] (end{array})。\right。$$ 其中 $a\geq0$, $b>0$, 函数 $V(x)$ 是有界域 $\Omega\subset\mathbb R^3$, $\beta^*:=\frac{b}{2}|Q|_2^{\frac{8}{3}$ 并且 $Q$ 是方程 $-2\Deltau+\frac{1}{3}u-|u|^{\frac{8}{3}}u=0 的唯一正向对称解。当且仅当 $a>0$ 时,最小值对应于上述问题的归一化基态。此外,当$V(x)$在一个内点或仅在$\Omega$边界处达到其平坦的全局最小值时,我们分析了当$a\searrow 0$时最小值的精细极限剖面,包括在内点或靠近$\Omega$边界处的质量浓度。特别是,如果最小量集中在一个唯一的内点,我们将进一步建立最小量的局部唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信