Holder regularity for nonlocal in time subdiffusion equations with general kernel

Adam Kubica, Katarzyna Ryszewska, Rico Zacher
{"title":"Holder regularity for nonlocal in time subdiffusion equations with general kernel","authors":"Adam Kubica, Katarzyna Ryszewska, Rico Zacher","doi":"arxiv-2409.04841","DOIUrl":null,"url":null,"abstract":"We study the regularity of weak solutions to nonlocal in time subdiffusion\nequations for a wide class of weakly singular kernels appearing in the\ngeneralised fractional derivative operator. We prove a weak Harnack inequality\nfor nonnegative weak supersolutions and Holder continuity of weak solutions to\nsuch problems. Our results substantially extend the results from our previous\nwork [12] by leaving the framework of distributed order fractional time\nderivatives and considering a general PC kernel and by also allowing for an\ninhomogeneity in the PDE from a Lebesgue space of mixed type.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the regularity of weak solutions to nonlocal in time subdiffusion equations for a wide class of weakly singular kernels appearing in the generalised fractional derivative operator. We prove a weak Harnack inequality for nonnegative weak supersolutions and Holder continuity of weak solutions to such problems. Our results substantially extend the results from our previous work [12] by leaving the framework of distributed order fractional time derivatives and considering a general PC kernel and by also allowing for an inhomogeneity in the PDE from a Lebesgue space of mixed type.
具有一般核的非局部时间亚扩散方程的荷尔德正则性
我们研究了广义分数导数算子中出现的一大类弱奇异核的非局部时间亚扩散方程弱解的正则性。我们证明了非负弱超解的弱哈纳克不等式以及此类问题弱解的连续性。通过离开分布阶分数时间导数的框架并考虑一般 PC 核,以及通过允许来自混合类型的 Lebesgue 空间的 PDE 中的非均质性,我们的结果大大扩展了我们之前的工作[12]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信