Boundedness and finite-time blow-up in a repulsion-consumption system with flux limitation

Ziyue Zeng, Yuxiang Li
{"title":"Boundedness and finite-time blow-up in a repulsion-consumption system with flux limitation","authors":"Ziyue Zeng, Yuxiang Li","doi":"arxiv-2409.05115","DOIUrl":null,"url":null,"abstract":"We investigate the following repulsion-consumption system with flux\nlimitation \\begin{align}\\tag{$\\star$} \\left\\{ \\begin{array}{ll} u_t=\\Delta u+\\nabla \\cdot(uf(|\\nabla v|^2) \\nabla v), & x \\in \\Omega, t>0, \\tau v_t=\\Delta v-u v, & x \\in \\Omega, t>0, \\end{array} \\right. \\end{align} under no-flux/Dirichlet boundary conditions, where\n$\\Omega \\subset \\mathbb{R}^n$ is a bounded domain and $f(\\xi)$ generalizes the\nprototype given by $f(\\xi)=(1+\\xi)^{-\\alpha}$ ($\\xi \\geqslant 0$). We are\nmainly concerned with the global existence and finite time blow-up of system\n($\\star$). The main results assert that, for $\\alpha > \\frac{n-2}{2n}$, then\nwhen $\\tau=1$ and under radial settings, or when $\\tau=0$ without radial\nassumptions, for arbitrary initial data, the problem ($\\star$) possesses global\nbounded classical solutions; for $\\alpha<0$, $\\tau=0$, $n=2$ and under radial\nsettings, for any initial data, whenever the boundary signal level large\nenough, the solutions of the corresponding problem blow up in finite time. Our results can be compared respectively with the blow-up phenomenon obtained\nby Ahn \\& Winkler (2023) for the system with nonlinear diffusion and linear\nchemotactic sensitivity, and by Wang \\& Winkler (2023) for the system with\nnonlinear diffusion and singular sensitivity .","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the following repulsion-consumption system with flux limitation \begin{align}\tag{$\star$} \left\{ \begin{array}{ll} u_t=\Delta u+\nabla \cdot(uf(|\nabla v|^2) \nabla v), & x \in \Omega, t>0, \tau v_t=\Delta v-u v, & x \in \Omega, t>0, \end{array} \right. \end{align} under no-flux/Dirichlet boundary conditions, where $\Omega \subset \mathbb{R}^n$ is a bounded domain and $f(\xi)$ generalizes the prototype given by $f(\xi)=(1+\xi)^{-\alpha}$ ($\xi \geqslant 0$). We are mainly concerned with the global existence and finite time blow-up of system ($\star$). The main results assert that, for $\alpha > \frac{n-2}{2n}$, then when $\tau=1$ and under radial settings, or when $\tau=0$ without radial assumptions, for arbitrary initial data, the problem ($\star$) possesses global bounded classical solutions; for $\alpha<0$, $\tau=0$, $n=2$ and under radial settings, for any initial data, whenever the boundary signal level large enough, the solutions of the corresponding problem blow up in finite time. Our results can be compared respectively with the blow-up phenomenon obtained by Ahn \& Winkler (2023) for the system with nonlinear diffusion and linear chemotactic sensitivity, and by Wang \& Winkler (2023) for the system with nonlinear diffusion and singular sensitivity .
具有通量限制的斥力-消耗系统中的有界性和有限时间膨胀
我们研究了以下具有通量限制的斥力-消耗系统\left\{ \begin{array}{ll} u_t=\Delta u+\nabla \cdot(uf(|\nabla v|^2) \nabla v), & x \in \Omega, t>0, \tau v_t=\Delta v-u v, & x \in \Omega, t>0, \end{array}.\right.\end{align} under no-flux/Dirichlet boundary conditions, where$\Omega \subset \mathbb{R}^n$ is a bounded domain and $f(\xi)$ generalizes theprototype given by $f(\xi)=(1+\xi)^{-\alpha}$ ($\xi \geqslant 0$).我们主要关注系统($\star$)的全局存在性和有限时间膨胀。主要结果断言,对于任意初始数据,当 $\alpha > \frac{n-2}{2n}$时,当 $\tau=1$ 并且在径向设置下,或者当 $\tau=0$ 没有径向假设时,问题($\star$)具有全局有界经典解;当 $\alpha<0$, $\tau=0$, $n=2$ 时,在径向设置下,对于任意初始数据,只要边界信号电平足够大,相应问题的解就会在有限时间内炸毁。我们的结果可以分别与 Ahn \& Winkler (2023) 针对非线性扩散和线性运动敏感性系统以及 Wang \& Winkler (2023) 针对非线性扩散和奇异敏感性系统得到的炸裂现象进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信