Asymptotic expansion of a nonlocal phase transition energy

Serena Dipierro, Stefania Patrizi, Enrico Valdinoci, Mary Vaughan
{"title":"Asymptotic expansion of a nonlocal phase transition energy","authors":"Serena Dipierro, Stefania Patrizi, Enrico Valdinoci, Mary Vaughan","doi":"arxiv-2409.06215","DOIUrl":null,"url":null,"abstract":"We study the asymptotic behavior of the fractional Allen--Cahn energy\nfunctional in bounded domains with prescribed Dirichlet boundary conditions. When the fractional power $s \\in (0,\\frac12)$, we establish the complete\nasymptotic development up to the boundary in the sense of $\\Gamma$-convergence.\nIn particular, we prove that the first-order term is the nonlocal minimal\nsurface functional while all higher-order terms are zero. For $s \\in [\\frac12,1)$, we focus on the one-dimensional case and we prove\nthat the first order term is the classical perimeter functional plus a\npenalization on the boundary. Towards this end, we establish existence of\nminimizers to a corresponding fractional energy in a half-line, which provides\nitself a new feature with respect to the existing literature.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the asymptotic behavior of the fractional Allen--Cahn energy functional in bounded domains with prescribed Dirichlet boundary conditions. When the fractional power $s \in (0,\frac12)$, we establish the complete asymptotic development up to the boundary in the sense of $\Gamma$-convergence. In particular, we prove that the first-order term is the nonlocal minimal surface functional while all higher-order terms are zero. For $s \in [\frac12,1)$, we focus on the one-dimensional case and we prove that the first order term is the classical perimeter functional plus a penalization on the boundary. Towards this end, we establish existence of minimizers to a corresponding fractional energy in a half-line, which provides itself a new feature with respect to the existing literature.
非局部相变能量的渐近展开
我们研究了具有规定的迪里希特边界条件的有界域中分数艾伦--卡恩能量函数的渐近行为。当分数幂 $s (0,\frac12)$ 时,我们在 $\Gamma$ 收敛的意义上建立了直到边界的完整渐近发展。特别是,我们证明了一阶项是非局部最小面函数,而所有高阶项都为零。对于 [\frac12,1)$ 中的 $s,我们将重点放在一维情况上,并证明一阶项是经典的周长函数加上边界上的apenalization。为此,我们在半线上建立了相应分数能量的最小化存在,这为现有文献提供了新的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信