Normalized ground state solutions of Schrödinger-KdV system in $\mathbb{R}^3$

Qian Gao, Qun Wang, Xiaojun Chang
{"title":"Normalized ground state solutions of Schrödinger-KdV system in $\\mathbb{R}^3$","authors":"Qian Gao, Qun Wang, Xiaojun Chang","doi":"arxiv-2409.06528","DOIUrl":null,"url":null,"abstract":"In this paper, we study the coupled Schr\\\"odinger-KdV system \\begin{align*} \\begin{cases} -\\Delta u +\\lambda_1 u=u^3+\\beta uv~~&\\text{in}~~\\mathbb{R}^{3}, \\\\-\\Delta v\n+\\lambda_2 v=\\frac{1}{2}v^2+\\frac{1}{2}\\beta u^2~~&\\text{in}~~\\mathbb{R}^{3}\n\\end{cases} \\end{align*} subject to the mass constraints \\begin{equation*}\n\\int_{\\mathbb{R}^{3}}|u|^2 dx=a,\\quad \\int_{\\mathbb{R}^{3}}|v|^2 dx=b,\n\\end{equation*} where $a, b>0$ are given constants, $\\beta>0$, and the frequencies\n$\\lambda_1,\\lambda_2$ arise as Lagrange multipliers. The system exhibits\n$L^2$-supercritical growth. Using a novel constraint minimization approach, we\ndemonstrate the existence of a local minimum solution to the system.\nFurthermore, we establish the existence of normalized ground state solutions.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the coupled Schr\"odinger-KdV system \begin{align*} \begin{cases} -\Delta u +\lambda_1 u=u^3+\beta uv~~&\text{in}~~\mathbb{R}^{3}, \\-\Delta v +\lambda_2 v=\frac{1}{2}v^2+\frac{1}{2}\beta u^2~~&\text{in}~~\mathbb{R}^{3} \end{cases} \end{align*} subject to the mass constraints \begin{equation*} \int_{\mathbb{R}^{3}}|u|^2 dx=a,\quad \int_{\mathbb{R}^{3}}|v|^2 dx=b, \end{equation*} where $a, b>0$ are given constants, $\beta>0$, and the frequencies $\lambda_1,\lambda_2$ arise as Lagrange multipliers. The system exhibits $L^2$-supercritical growth. Using a novel constraint minimization approach, we demonstrate the existence of a local minimum solution to the system. Furthermore, we establish the existence of normalized ground state solutions.
薛定谔-KdV 系统在 $\mathbb{R}^3$ 中的归一化基态解
在本文中,我们研究了耦合薛定谔-KdV 系统-Delta u+lambda_1 u=u^3+beta uv~~&text{in}~~\mathbb{R}^{3}, (-△ v+lambda_2 v=frac{1}{2}v^2+frac{1}{2}\beta u^2~~&text{in}~~\mathbb{R}^{3}\end{cases}\end{align*} 受到质量约束条件的限制 \begin{equation*}\int_{\mathbb{R}^{3}}|u|^2 dx=a,\quad \int_{\mathbb{R}^{3}}|v|^2 dx=b、\end{equation*} 其中,$a, b>0$ 为给定常数,$\beta>0$,频率$\lambda_1,\lambda_2$ 为拉格朗日乘数。系统呈现出$L^2$超临界增长。利用一种新颖的约束最小化方法,我们证明了系统局部最小解的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信