{"title":"Normalized ground state solutions of Schrödinger-KdV system in $\\mathbb{R}^3$","authors":"Qian Gao, Qun Wang, Xiaojun Chang","doi":"arxiv-2409.06528","DOIUrl":null,"url":null,"abstract":"In this paper, we study the coupled Schr\\\"odinger-KdV system \\begin{align*} \\begin{cases} -\\Delta u +\\lambda_1 u=u^3+\\beta uv~~&\\text{in}~~\\mathbb{R}^{3}, \\\\-\\Delta v\n+\\lambda_2 v=\\frac{1}{2}v^2+\\frac{1}{2}\\beta u^2~~&\\text{in}~~\\mathbb{R}^{3}\n\\end{cases} \\end{align*} subject to the mass constraints \\begin{equation*}\n\\int_{\\mathbb{R}^{3}}|u|^2 dx=a,\\quad \\int_{\\mathbb{R}^{3}}|v|^2 dx=b,\n\\end{equation*} where $a, b>0$ are given constants, $\\beta>0$, and the frequencies\n$\\lambda_1,\\lambda_2$ arise as Lagrange multipliers. The system exhibits\n$L^2$-supercritical growth. Using a novel constraint minimization approach, we\ndemonstrate the existence of a local minimum solution to the system.\nFurthermore, we establish the existence of normalized ground state solutions.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the coupled Schr\"odinger-KdV system \begin{align*} \begin{cases} -\Delta u +\lambda_1 u=u^3+\beta uv~~&\text{in}~~\mathbb{R}^{3}, \\-\Delta v
+\lambda_2 v=\frac{1}{2}v^2+\frac{1}{2}\beta u^2~~&\text{in}~~\mathbb{R}^{3}
\end{cases} \end{align*} subject to the mass constraints \begin{equation*}
\int_{\mathbb{R}^{3}}|u|^2 dx=a,\quad \int_{\mathbb{R}^{3}}|v|^2 dx=b,
\end{equation*} where $a, b>0$ are given constants, $\beta>0$, and the frequencies
$\lambda_1,\lambda_2$ arise as Lagrange multipliers. The system exhibits
$L^2$-supercritical growth. Using a novel constraint minimization approach, we
demonstrate the existence of a local minimum solution to the system.
Furthermore, we establish the existence of normalized ground state solutions.