Regular Strichartz estimates in Lorentz-type spaces with application to the $H^s$-critical inhomogeneous biharmonic NLS equation

RoeSong Jang, JinMyong An, JinMyong Kim
{"title":"Regular Strichartz estimates in Lorentz-type spaces with application to the $H^s$-critical inhomogeneous biharmonic NLS equation","authors":"RoeSong Jang, JinMyong An, JinMyong Kim","doi":"arxiv-2409.06278","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the Cauchy problem for the $H^s$-critical\ninhomogeneous biharmonic nonlinear Schr\\\"{o}dinger (IBNLS) equation \\[iu_{t}\\pm\n\\Delta^{2} u=\\lambda |x|^{-b}|u|^{\\sigma}u,~u(0)=u_{0} \\in H^{s} (\\mathbb\nR^{d}),\\] where $\\lambda\\in \\mathbb C$, $d\\ge 3$, $1\\le s<\\frac{d}{2}$,\n$0<b<\\min \\left\\{4,2+\\frac{d}{2}-s \\right\\}$ and $\\sigma=\\frac{8-2b}{d-2s}$.\nFirst, we study the properties of Lorentz-type spaces such as Besov-Lorentz\nspaces and Triebel-Lizorkin-Lorentz spaces. We then derive the regular\nStrichartz estimates for the corresponding linear equation in Lorentz-type\nspaces. Using these estimates, we establish the local well-posedness as well as\nthe small data global well-posedness and scattering in $H^s$ for the\n$H^s$-critical IBNLS equation under less regularity assumption on the nonlinear\nterm than in the recent work \\cite{AKR24}. This result also extends the ones of\n\\cite{SP23,SG24} by extending the validity of $d$, $b$ and $s$. Finally, we\ngive the well-posedness result in the homogeneous Sobolev spaces $\\dot{H}^s$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the Cauchy problem for the $H^s$-critical inhomogeneous biharmonic nonlinear Schr\"{o}dinger (IBNLS) equation \[iu_{t}\pm \Delta^{2} u=\lambda |x|^{-b}|u|^{\sigma}u,~u(0)=u_{0} \in H^{s} (\mathbb R^{d}),\] where $\lambda\in \mathbb C$, $d\ge 3$, $1\le s<\frac{d}{2}$, $0
洛伦兹型空间中的正规斯特里查兹估计值与对 $H^s$ 临界非均质双谐波 NLS 方程的应用
本文研究了$H^s$临界同调双谐非线性薛定谔方程(IBNLS)的考奇问题([iu_{t}\pm\Delta^{2} u=\lambda |x|^{-b}|u|^{sigma}u,~u(0)=u_{0}\in H^{s} (\mathbbR^{d}),\] 其中 $\lambda\in \mathbb C$, $d\ge 3$, $1\le s
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信