Note on the existence of classical solutions of derivative semilinear models for one dimensional wave equation

Takiko Sasaki, Hiroyuki Takamura
{"title":"Note on the existence of classical solutions of derivative semilinear models for one dimensional wave equation","authors":"Takiko Sasaki, Hiroyuki Takamura","doi":"arxiv-2409.06378","DOIUrl":null,"url":null,"abstract":"This note is a supplement with a new result to the review paper by Takamura\n[13] on nonlinear wave equations in one space dimension. We are focusing here\nto the long-time existence of classical solutions of semilinear wave equations\nin one space dimension, especially with derivative nonlinear terms of\nproduct-type. Our result is an extension of the single component case, but it\nis meaningful to provide models as possible as many to cover the optimality of\nthe general theory. The proof is based on the classical iteration argument of\nthe point-wise estimate of the solution.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This note is a supplement with a new result to the review paper by Takamura [13] on nonlinear wave equations in one space dimension. We are focusing here to the long-time existence of classical solutions of semilinear wave equations in one space dimension, especially with derivative nonlinear terms of product-type. Our result is an extension of the single component case, but it is meaningful to provide models as possible as many to cover the optimality of the general theory. The proof is based on the classical iteration argument of the point-wise estimate of the solution.
关于一维波方程导数半线性模型经典解存在性的说明
本注释是对高村(Takamura)[13] 关于一维空间非线性波方程的综述论文的一个新结果的补充。我们的重点是一维空间半线性波方程经典解的长期存在性,特别是带有导数非线性项的积型。我们的结果是对单分量情况的扩展,但提供尽可能多的模型以涵盖一般理论的最优性是有意义的。证明基于解的点估计的经典迭代论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信