Convergence in the incompressible limit of the corner singularities

Hyung Jun Choi, Seonghak Kim, Youngwoo Koh
{"title":"Convergence in the incompressible limit of the corner singularities","authors":"Hyung Jun Choi, Seonghak Kim, Youngwoo Koh","doi":"arxiv-2409.06602","DOIUrl":null,"url":null,"abstract":"In this paper, we treat the corner singularity expansion and its convergence\nresult regarding the penalized system obtained by eliminating the pressure\nvariable in the Stokes problem of incompressible flow. The penalized problem is\na kind of the Lam\\'{e} system, so we first discuss the corner singularity\ntheory of the Lam\\'{e} system with inhomogeneous Dirichlet boundary condition\non a non-convex polygon. Considering the inhomogeneous condition, we show the\ndecomposition of its solution, composed of singular parts and a smoother\nremainder near a re-entrant corner, and furthermore, we provide the explicit\nformulae of coefficients in singular parts. In particular, these formulae can\nbe used in the development of highly accurate numerical scheme. In addition, we\nformulate coefficients in singular parts regarding the Stokes equations with\ninhomogeneous boundary condition and non-divergence-free property of velocity\nfield, and thus we show the convergence results of coefficients in singular\nparts and remainder regarding the concerned penalized problem.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we treat the corner singularity expansion and its convergence result regarding the penalized system obtained by eliminating the pressure variable in the Stokes problem of incompressible flow. The penalized problem is a kind of the Lam\'{e} system, so we first discuss the corner singularity theory of the Lam\'{e} system with inhomogeneous Dirichlet boundary condition on a non-convex polygon. Considering the inhomogeneous condition, we show the decomposition of its solution, composed of singular parts and a smoother remainder near a re-entrant corner, and furthermore, we provide the explicit formulae of coefficients in singular parts. In particular, these formulae can be used in the development of highly accurate numerical scheme. In addition, we formulate coefficients in singular parts regarding the Stokes equations with inhomogeneous boundary condition and non-divergence-free property of velocity field, and thus we show the convergence results of coefficients in singular parts and remainder regarding the concerned penalized problem.
角奇点不可压缩极限的收敛性
本文讨论了不可压缩流动斯托克斯问题中通过消除压力变量得到的惩罚系统的角奇点展开及其收敛结果。惩罚性问题是 Lam\'{e} 系统的一种,因此我们首先讨论了在非凸多边形上具有非均质 Dirichlet 边界条件的 Lam\'{e} 系统的角奇异性理论。考虑到非均质条件,我们展示了其解的分解,由奇异部分和再入角处的平滑余量组成,并进一步提供了奇异部分系数的显式公式。特别是,这些公式可用于开发高精度的数值方案。此外,我们还计算了在均质边界条件和速度场无发散特性下斯托克斯方程的奇异部分系数,从而展示了奇异部分系数和余数对相关受罚问题的收敛结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信