Finding the convex hull of a set using the flow by minimal curvature with an obstacle. A game theoretical approach

Irene Gonzálvez, Alfredo Miranda, Julio D. Rossi, Jorge Ruiz-Cases
{"title":"Finding the convex hull of a set using the flow by minimal curvature with an obstacle. A game theoretical approach","authors":"Irene Gonzálvez, Alfredo Miranda, Julio D. Rossi, Jorge Ruiz-Cases","doi":"arxiv-2409.06855","DOIUrl":null,"url":null,"abstract":"In this paper we look for the convex hull of a set using the geometric\nevolution by minimal curvature of a hypersurface that surrounds the set. To\nfind the convex hull, we study the large time behavior of solutions to an\nobstacle problem for the level set formulation of the geometric flow driven by\nthe minimum of the principal curvatures (that coincides with the mean curvature\nflow only in two dimensions). We prove that the superlevel set where the\nsolution to this obstacle problem is positive converges as time goes to\ninfinity to the convex hull of the obstacle. Our approach is based on a\ngame-theoretic approximation for this geometric flow that is inspired by\nprevious results for the mean curvature flow.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"137 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we look for the convex hull of a set using the geometric evolution by minimal curvature of a hypersurface that surrounds the set. To find the convex hull, we study the large time behavior of solutions to an obstacle problem for the level set formulation of the geometric flow driven by the minimum of the principal curvatures (that coincides with the mean curvature flow only in two dimensions). We prove that the superlevel set where the solution to this obstacle problem is positive converges as time goes to infinity to the convex hull of the obstacle. Our approach is based on a game-theoretic approximation for this geometric flow that is inspired by previous results for the mean curvature flow.
利用有障碍物的最小曲率流寻找集合的凸面。博弈论方法
在本文中,我们利用环绕集合的超曲面的最小曲率的几何演变来寻找集合的凸壳。为了找到凸壳,我们研究了由主曲率最小值(仅在二维中与平均曲率流重合)驱动的几何流的水平集表述的障碍问题解的大时间行为。我们证明,随着时间的推移,这个障碍问题的解为正的超等级集收敛于障碍的凸壳。我们的方法基于对这种几何流的一种ame 理论近似,而这种近似的灵感来自于之前对平均曲率流的研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信