Weak solutions to a model for phase separation coupled with finite-strain viscoelasticity subject to external distortion

Thomas Eiter, Leonie Schmeller
{"title":"Weak solutions to a model for phase separation coupled with finite-strain viscoelasticity subject to external distortion","authors":"Thomas Eiter, Leonie Schmeller","doi":"arxiv-2409.07066","DOIUrl":null,"url":null,"abstract":"We study the coupling of a viscoelastic deformation governed by a\nKelvin-Voigt model at equilibrium, based on the concept of second-grade\nnonsimple materials, with a plastic deformation due to volumetric swelling,\ndescribed via a phase-field variable subject to a Cahn-Hilliard model expressed\nin a Lagrangian frame. Such models can be used to describe the time evolution\nof hydrogels in terms of phase separation within a deformable substrate. The\nequations are mainly coupled via a multiplicative decomposition of the\ndeformation gradient into both contributions and via a Korteweg term in the\nEulerian frame. To treat time-dependent Dirichlet conditions for the\ndeformation, an auxiliary variable with fixed boundary values is introduced,\nwhich results in another multiplicative structure. Imposing suitable growth\nconditions on the elastic and viscous potentials, we construct weak solutions\nto this quasistatic model as the limit of time-discrete solutions to\nincremental minimization problems. The limit passage is possible due to\nadditional regularity induced by the hyperelastic and viscous stresses.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the coupling of a viscoelastic deformation governed by a Kelvin-Voigt model at equilibrium, based on the concept of second-grade nonsimple materials, with a plastic deformation due to volumetric swelling, described via a phase-field variable subject to a Cahn-Hilliard model expressed in a Lagrangian frame. Such models can be used to describe the time evolution of hydrogels in terms of phase separation within a deformable substrate. The equations are mainly coupled via a multiplicative decomposition of the deformation gradient into both contributions and via a Korteweg term in the Eulerian frame. To treat time-dependent Dirichlet conditions for the deformation, an auxiliary variable with fixed boundary values is introduced, which results in another multiplicative structure. Imposing suitable growth conditions on the elastic and viscous potentials, we construct weak solutions to this quasistatic model as the limit of time-discrete solutions to incremental minimization problems. The limit passage is possible due to additional regularity induced by the hyperelastic and viscous stresses.
受外部变形影响的相分离与有限应变粘弹性耦合模型的弱解
我们研究了基于第二梯度简单材料概念的开尔文-伏依格特(Kelvin-Voigt)模型在平衡状态下控制的粘弹性变形与体积膨胀引起的塑性变形之间的耦合,后者是通过受拉格朗日框架表达的卡恩-希利亚德(Cahn-Hilliard)模型控制的相场变量来描述的。这种模型可用于描述水凝胶在可变形基底内相分离的时间演化。这些方程主要是通过将变形梯度乘法分解为两个贡献和通过欧拉框架中的 Korteweg 项来耦合的。为了处理随时间变化的迪里希特变形条件,引入了一个具有固定边界值的辅助变量,从而产生了另一种乘法结构。通过对弹性和粘性势施加适当的增长条件,我们构建了这个准静态模型的弱解,作为增量最小化问题的时间离散解的极限。由于超弹性应力和粘性应力引起的附加规则性,这种极限传递是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信