Translating solutions and the entire Hessian curvature flow in Minkowski space

Qu Changzheng, Wang Zhizhang, Wo Weifeng
{"title":"Translating solutions and the entire Hessian curvature flow in Minkowski space","authors":"Qu Changzheng, Wang Zhizhang, Wo Weifeng","doi":"arxiv-2409.07301","DOIUrl":null,"url":null,"abstract":"In this paper, we study the $k$-Hessian curvature flow of noncompact\nspacelike hypersurfaces in Minkowski space. We first prove the existence of\ntranslating solutions with given asymptotic behavior. Then, we prove that for\nstrictly convex initial hypersurface satisfying certain conditions, the\ncurvature flow exists for all time, and the normalized flow converges to a\ntranslating solution.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the $k$-Hessian curvature flow of noncompact spacelike hypersurfaces in Minkowski space. We first prove the existence of translating solutions with given asymptotic behavior. Then, we prove that for strictly convex initial hypersurface satisfying certain conditions, the curvature flow exists for all time, and the normalized flow converges to a translating solution.
闵科夫斯基空间中的平移解和全黑森曲率流
本文研究闵科夫斯基空间中非紧凑空间似超曲面的 $k$-Hessian 曲率流。我们首先证明了具有给定渐近行为的平移解的存在性。然后,我们证明对于满足特定条件的严格凸初始超曲面,曲率流在所有时间内都存在,并且归一化流收敛于平移解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信