Global existence and asymptotic behavior for diffusive Hamilton-Jacobi equations with Neumann boundary conditions

Joaquin Dominguez-de-Tena, Philippe Souplet
{"title":"Global existence and asymptotic behavior for diffusive Hamilton-Jacobi equations with Neumann boundary conditions","authors":"Joaquin Dominguez-de-Tena, Philippe Souplet","doi":"arxiv-2409.07338","DOIUrl":null,"url":null,"abstract":"We investigate the diffusive Hamilton-Jacobi equation $$u_t-\\Lap u = |\\nabla\nu|^p$$ with $p>1$, in a smooth bounded domain of $\\RN$ with homogeneous Neumann\nboundary conditions and $W^{1,\\infty}$ initial data. We show that all solutions\nexist globally, are bounded and converge in $W^{1,\\infty}$ norm to a constant\nas $t\\to\\infty$, with a uniform exponential rate of convergence given by the\nsecond Neumann eigenvalue. This improves previously known results, which\nprovided only an upper polynomial bound on the rate of convergence and required\nthe convexity of the domain. Furthermore, we extend these results to a rather\nlarge class of nonlinearities $F(\\nabla u)$ instead of~$|\\nabla u|^p$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the diffusive Hamilton-Jacobi equation $$u_t-\Lap u = |\nabla u|^p$$ with $p>1$, in a smooth bounded domain of $\RN$ with homogeneous Neumann boundary conditions and $W^{1,\infty}$ initial data. We show that all solutions exist globally, are bounded and converge in $W^{1,\infty}$ norm to a constant as $t\to\infty$, with a uniform exponential rate of convergence given by the second Neumann eigenvalue. This improves previously known results, which provided only an upper polynomial bound on the rate of convergence and required the convexity of the domain. Furthermore, we extend these results to a rather large class of nonlinearities $F(\nabla u)$ instead of~$|\nabla u|^p$.
具有新曼边界条件的扩散性汉密尔顿-雅可比方程的全局存在性和渐近行为
我们研究了扩散性汉密尔顿-贾可比方程 $$u_t-\Lap u = |\nablau|^p$$p>1$, 在具有同质新曼边界条件和 $W^{1,\infty}$ 初始数据的 $\RN$ 平滑有界域中。我们的研究表明,所有解都是全局存在的,都是有界的,并且在 $W^{1,\infty}$ 准则下随着 $t\to\infty$ 收敛到一个常数,其均匀指数收敛速率由这些秒诺伊曼特征值给出。这改进了以前已知的结果,以前的结果只提供了收敛速率的多项式上界,并且要求域的凸性。此外,我们将这些结果扩展到相当大的一类非线性$F(\nabla u)$,而不是~$|\nabla u|^p$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信