Non-local dissipative Aw-Rascle model and its relation with Matrix-valued communication in Euler alignment

Nilasis Chaudhuri, Jan Peszek, Maja Szlenk, Ewelina Zatorska
{"title":"Non-local dissipative Aw-Rascle model and its relation with Matrix-valued communication in Euler alignment","authors":"Nilasis Chaudhuri, Jan Peszek, Maja Szlenk, Ewelina Zatorska","doi":"arxiv-2409.07593","DOIUrl":null,"url":null,"abstract":"We compare the multi-dimensional generalisation of the Aw-Rascle model with\nthe pressureless Euler-alignment system, in which the communication weight is\nmatrix-valued. Our generalisation includes the velocity offset in the form of a\ngradient of a non-local density function, given by the convolution with a\nkernel $K$. We investigate connections between these models at the macroscopic,\nmesoscopic and macroscopic (hydrodynamic) level, and overview the results on\nthe mean-field limit for various assumptions on $K$.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We compare the multi-dimensional generalisation of the Aw-Rascle model with the pressureless Euler-alignment system, in which the communication weight is matrix-valued. Our generalisation includes the velocity offset in the form of a gradient of a non-local density function, given by the convolution with a kernel $K$. We investigate connections between these models at the macroscopic, mesoscopic and macroscopic (hydrodynamic) level, and overview the results on the mean-field limit for various assumptions on $K$.
非局部耗散 Aw-Rascle 模型及其与欧拉排列中的矩阵值通信的关系
我们将 Aw-Rascle 模型的多维广义化与无压欧拉对齐系统进行了比较,在无压欧拉对齐系统中,通信权重是矩阵值。我们的广义模型包括非局部密度函数梯度形式的速度偏移,由与核 $K$ 的卷积给出。我们研究了这些模型在宏观、介观和宏观(流体力学)层面上的联系,并概述了对 $K$ 的各种假设下的均场极限结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信