Emergence of peaked singularities in the Euler-Poisson system

Junsik Bae, Sang-Hyuck Moon, Kwan Woo
{"title":"Emergence of peaked singularities in the Euler-Poisson system","authors":"Junsik Bae, Sang-Hyuck Moon, Kwan Woo","doi":"arxiv-2409.08018","DOIUrl":null,"url":null,"abstract":"We consider the one-dimensional Euler-Poisson system equipped with the\nBoltzmann relation and provide the exact asymptotic behavior of the peaked\nsolitary wave solutions near the peak. This enables us to study the cold ion\nlimit of the peaked solitary waves with the sharp range of H\\\"older exponents.\nFurthermore, we provide numerical evidence for $C^1$ blow-up solutions to the\npressureless Euler-Poisson system, whose blow-up profiles are asymptotically\nsimilar to its peaked solitary waves and exhibit a different form of blow-up\ncompared to the Burgers-type (shock-like) blow-up.","PeriodicalId":501165,"journal":{"name":"arXiv - MATH - Analysis of PDEs","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the one-dimensional Euler-Poisson system equipped with the Boltzmann relation and provide the exact asymptotic behavior of the peaked solitary wave solutions near the peak. This enables us to study the cold ion limit of the peaked solitary waves with the sharp range of H\"older exponents. Furthermore, we provide numerical evidence for $C^1$ blow-up solutions to the pressureless Euler-Poisson system, whose blow-up profiles are asymptotically similar to its peaked solitary waves and exhibit a different form of blow-up compared to the Burgers-type (shock-like) blow-up.
欧拉-泊松系统中峰值奇点的出现
我们考虑了具有玻尔兹曼关系的一维欧拉-泊松系统,并提供了峰值附近孤波解的精确渐近行为。此外,我们还提供了无压欧拉-泊松系统的$C^1$炸裂解的数值证据,其炸裂剖面在渐近上与其峰值孤波相似,并表现出与伯格斯型(冲击型)炸裂不同的炸裂形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信