Understanding and Attaining an Investment Grade Rating in the Age of Explainable AI

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ravi Makwana, Dhruvil Bhatt, Kirtan Delwadia, Agam Shah, Bhaskar Chaudhury
{"title":"Understanding and Attaining an Investment Grade Rating in the Age of Explainable AI","authors":"Ravi Makwana, Dhruvil Bhatt, Kirtan Delwadia, Agam Shah, Bhaskar Chaudhury","doi":"10.1007/s10614-024-10700-7","DOIUrl":null,"url":null,"abstract":"<p>Specialized agencies issue corporate credit ratings to evaluate the creditworthiness of a company, serving as a crucial financial indicator for potential investors. These ratings offer a tangible understanding of the risks associated with the credit investment returns of a company. Every company aims to achieve a favorable credit rating, as it enables them to attract more investments and reduce their cost of capital. Credit rating agencies typically employ unique rating scales that are broadly categorized into investment-grade or non-investment-grade (junk) classes. Given the extensive assessment conducted by credit rating agencies, it becomes a challenge for companies to formulate a straightforward and all-encompassing set of rules which may help to understand and improve their credit rating. This paper employs explainable AI, specifically decision trees, using historical data to establish an empirical rule on financial ratios. The rule obtained using the proposed approach can be effectively utilized to understand as well as plan and attain an investment-grade rating. Additionally, the study investigates the temporal aspect by identifying the optimal time window for training data. As the availability of structured data for temporal analysis is currently limited, this study addresses this challenge by creating a large and high-quality curated dataset. This dataset serves as a valuable resource for conducting comprehensive temporal analysis. Our analysis demonstrates that the empirical rule derived from historical data, yields a high precision value, and therefore highlights the effectiveness of our proposed approach as a valuable guideline and a feasible decision support system.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10700-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Specialized agencies issue corporate credit ratings to evaluate the creditworthiness of a company, serving as a crucial financial indicator for potential investors. These ratings offer a tangible understanding of the risks associated with the credit investment returns of a company. Every company aims to achieve a favorable credit rating, as it enables them to attract more investments and reduce their cost of capital. Credit rating agencies typically employ unique rating scales that are broadly categorized into investment-grade or non-investment-grade (junk) classes. Given the extensive assessment conducted by credit rating agencies, it becomes a challenge for companies to formulate a straightforward and all-encompassing set of rules which may help to understand and improve their credit rating. This paper employs explainable AI, specifically decision trees, using historical data to establish an empirical rule on financial ratios. The rule obtained using the proposed approach can be effectively utilized to understand as well as plan and attain an investment-grade rating. Additionally, the study investigates the temporal aspect by identifying the optimal time window for training data. As the availability of structured data for temporal analysis is currently limited, this study addresses this challenge by creating a large and high-quality curated dataset. This dataset serves as a valuable resource for conducting comprehensive temporal analysis. Our analysis demonstrates that the empirical rule derived from historical data, yields a high precision value, and therefore highlights the effectiveness of our proposed approach as a valuable guideline and a feasible decision support system.

Abstract Image

在可解释的人工智能时代理解并获得投资级评级
专门机构发布企业信用评级,以评估公司的信用度,作为潜在投资者的重要财务指标。通过这些评级,可以切实了解与公司信贷投资回报相关的风险。每家公司都希望获得良好的信用评级,因为这样可以吸引更多投资,降低资本成本。信用评级机构通常采用独特的评级标准,大致分为投资级和非投资级(垃圾级)。鉴于信用评级机构进行了广泛的评估,如何制定一套简单明了、包罗万象的规则,以帮助企业了解并提高其信用评级,成为企业面临的一项挑战。本文采用了可解释人工智能,特别是决策树,利用历史数据来建立财务比率的经验规则。利用所提出的方法获得的规则可以有效地用于理解、规划和获得投资级评级。此外,本研究还通过确定训练数据的最佳时间窗口,对时间方面进行了研究。由于目前用于时间分析的结构化数据有限,本研究通过创建一个大型、高质量的数据集来应对这一挑战。该数据集是进行综合时间分析的宝贵资源。我们的分析表明,从历史数据中得出的经验法则具有很高的精确度,因此,我们提出的方法作为一种有价值的指南和可行的决策支持系统,具有很强的实效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信