Iterative Deep Learning Approach to Active Portfolio Management with Sentiment Factors

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Javier Orlando Pantoja Robayo, Julián Alberto Alemán Muñoz, Diego F. Tellez-Falla
{"title":"Iterative Deep Learning Approach to Active Portfolio Management with Sentiment Factors","authors":"Javier Orlando Pantoja Robayo, Julián Alberto Alemán Muñoz, Diego F. Tellez-Falla","doi":"10.1007/s10614-024-10702-5","DOIUrl":null,"url":null,"abstract":"<p>We suggest using deep learning networks to create expert opinions as part of an iterative active portfolio management process. These opinions would be based on posts from the X platform and the fundamentals of stocks listed in the S&amp;P 500 index. Expert views are integral to active portfolio management, as proposed by Black–Litterman. The method we propose addresses the original subjectivity of the opinions by incorporating innovation and accuracy to generate views using analytical techniques. We utilize daily data from 2010 to 2022 for stocks from the S&amp;P 500 and daily posts from Twitter API v2, collected under a research account license spanning the same period. We found that incorporating sentiment factors with machine learning techniques into the view generation process of the Black–Litterman model improves optimal portfolio allocation. Empirically, our results notably outperform the S&amp;P 500 market when considering the annualized alpha.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10702-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We suggest using deep learning networks to create expert opinions as part of an iterative active portfolio management process. These opinions would be based on posts from the X platform and the fundamentals of stocks listed in the S&P 500 index. Expert views are integral to active portfolio management, as proposed by Black–Litterman. The method we propose addresses the original subjectivity of the opinions by incorporating innovation and accuracy to generate views using analytical techniques. We utilize daily data from 2010 to 2022 for stocks from the S&P 500 and daily posts from Twitter API v2, collected under a research account license spanning the same period. We found that incorporating sentiment factors with machine learning techniques into the view generation process of the Black–Litterman model improves optimal portfolio allocation. Empirically, our results notably outperform the S&P 500 market when considering the annualized alpha.

Abstract Image

利用情绪因素进行主动投资组合管理的迭代深度学习方法
我们建议使用深度学习网络创建专家意见,作为迭代式主动投资组合管理流程的一部分。这些意见将基于 X 平台的帖子和 S&P 500 指数所列股票的基本面。正如布莱克-利特曼(Black-Litterman)所提出的,专家意见是主动投资组合管理不可或缺的一部分。我们提出的方法通过创新和准确性,利用分析技术生成观点,从而解决了原有观点的主观性问题。我们利用 2010 年至 2022 年 S&P 500 指数股票的每日数据,以及 Twitter API v2 中的每日帖子,这些帖子是在研究账户许可证下收集的,时间跨度为同一时期。我们发现,将情感因素与机器学习技术结合到 Black-Litterman 模型的观点生成过程中,可以改善最优投资组合配置。从经验上看,在考虑年化阿尔法时,我们的结果明显优于 S&P 500 指数市场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信