Ehsan Habibi Siyahpoosh, Mohammad Reza Ansari, Khosro Sheikhi, Sadegh Ahmadi
{"title":"Numerical Simulation of Hydrodynamic Noises during Bubble Rising Process","authors":"Ehsan Habibi Siyahpoosh, Mohammad Reza Ansari, Khosro Sheikhi, Sadegh Ahmadi","doi":"10.1007/s10494-024-00582-y","DOIUrl":null,"url":null,"abstract":"<p>Noise analysis is one of the most efficient and newest methods to investigate dynamic behaviors of any system. In this study, hydrodynamic noises of a single bubble are scrutinized by applying Curle's acoustic analogy as implemented in OpenFoam® v2012. Meanwhile, a new solver (interAcousticFoam) is developed to hydroacoustically evaluate the noise sources. A three-dimensional transient incompressible two-phase flow model is simulated based on the hybrid method (the volume of fluid (VOF) method and Curle’s analogy method) to predict the acoustic emission characteristics of the single bubble. The pressure fluctuations are measured by adding the scale adaptive simulation (SAS) concept to the unsteady reynolds-averaged Navier–Stokes (URANS) simulation, which resulted in precise extraction of the flow fluctuations and thus the accurate simulation of the acoustic pressure fluctuations is achieved. Additionally, the analysis of the noise production mechanism is developed by implementing the Acoustic Perturbation Equations (APE) in the new solver. An alternative version of the acoustic technique is proposed to estimate the acoustic pressure fluctuations during the bubble rising process at an orifice submerged in water. The dynamic responses and the time–frequency analyses of the bubble indicate that the numerical simulation covers the main features of the principal acoustic components and can successfully predict the natural frequency of the bubble’s dynamic behaviors.</p>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"4 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10494-024-00582-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Noise analysis is one of the most efficient and newest methods to investigate dynamic behaviors of any system. In this study, hydrodynamic noises of a single bubble are scrutinized by applying Curle's acoustic analogy as implemented in OpenFoam® v2012. Meanwhile, a new solver (interAcousticFoam) is developed to hydroacoustically evaluate the noise sources. A three-dimensional transient incompressible two-phase flow model is simulated based on the hybrid method (the volume of fluid (VOF) method and Curle’s analogy method) to predict the acoustic emission characteristics of the single bubble. The pressure fluctuations are measured by adding the scale adaptive simulation (SAS) concept to the unsteady reynolds-averaged Navier–Stokes (URANS) simulation, which resulted in precise extraction of the flow fluctuations and thus the accurate simulation of the acoustic pressure fluctuations is achieved. Additionally, the analysis of the noise production mechanism is developed by implementing the Acoustic Perturbation Equations (APE) in the new solver. An alternative version of the acoustic technique is proposed to estimate the acoustic pressure fluctuations during the bubble rising process at an orifice submerged in water. The dynamic responses and the time–frequency analyses of the bubble indicate that the numerical simulation covers the main features of the principal acoustic components and can successfully predict the natural frequency of the bubble’s dynamic behaviors.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.