Colored Point Cloud Quality Assessment Using Complementary Features in 3D and 2D Spaces

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mao Cui;Yun Zhang;Chunling Fan;Raouf Hamzaoui;Qinglan Li
{"title":"Colored Point Cloud Quality Assessment Using Complementary Features in 3D and 2D Spaces","authors":"Mao Cui;Yun Zhang;Chunling Fan;Raouf Hamzaoui;Qinglan Li","doi":"10.1109/TMM.2024.3443634","DOIUrl":null,"url":null,"abstract":"Point Cloud Quality Assessment (PCQA) plays an essential role in optimizing point cloud acquisition, encoding, transmission, and rendering for human-centric visual media applications. In this paper, we propose an objective PCQA model using Complementary Features from 3D and 2D spaces, called CF-PCQA, to measure the visual quality of colored point clouds. First, we develop four effective features in 3D space to represent the perceptual properties of colored point clouds, which include curvature, kurtosis, luminance distance and hue features of points in 3D space. Second, we project the 3D point cloud onto 2D planes using patch projection and extract a structural similarity feature of the projected 2D images in the spatial domain, as well as a sub-band similarity feature in the wavelet domain. Finally, we propose a feature selection and a learning model to fuse high dimensional features and predict the visual quality of the colored point clouds. Extensive experimental results show that the Pearson Linear Correlation Coefficients (PLCCs) of the proposed CF-PCQA were 0.9117, 0.9005, 0.9340 and 0.9826 on the SIAT-PCQD, SJTU-PCQA, WPC2.0 and ICIP2020 datasets, respectively. Moreover, statistical significance tests demonstrate that the CF-PCQA significantly outperforms the state-of-the-art PCQA benchmark schemes on the four datasets.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"11111-11125"},"PeriodicalIF":8.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10636765/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Point Cloud Quality Assessment (PCQA) plays an essential role in optimizing point cloud acquisition, encoding, transmission, and rendering for human-centric visual media applications. In this paper, we propose an objective PCQA model using Complementary Features from 3D and 2D spaces, called CF-PCQA, to measure the visual quality of colored point clouds. First, we develop four effective features in 3D space to represent the perceptual properties of colored point clouds, which include curvature, kurtosis, luminance distance and hue features of points in 3D space. Second, we project the 3D point cloud onto 2D planes using patch projection and extract a structural similarity feature of the projected 2D images in the spatial domain, as well as a sub-band similarity feature in the wavelet domain. Finally, we propose a feature selection and a learning model to fuse high dimensional features and predict the visual quality of the colored point clouds. Extensive experimental results show that the Pearson Linear Correlation Coefficients (PLCCs) of the proposed CF-PCQA were 0.9117, 0.9005, 0.9340 and 0.9826 on the SIAT-PCQD, SJTU-PCQA, WPC2.0 and ICIP2020 datasets, respectively. Moreover, statistical significance tests demonstrate that the CF-PCQA significantly outperforms the state-of-the-art PCQA benchmark schemes on the four datasets.
利用三维和二维空间中的互补特征进行彩色点云质量评估
点云质量评估(PCQA)在优化以人为本的视觉媒体应用中的点云采集、编码、传输和渲染方面发挥着至关重要的作用。在本文中,我们提出了一种使用三维和二维空间互补特征的客观 PCQA 模型,称为 CF-PCQA,用于测量彩色点云的视觉质量。首先,我们开发了四种有效的三维空间特征来表示彩色点云的感知属性,其中包括三维空间中点的曲率、峰度、亮度距离和色调特征。其次,我们使用贴片投影法将三维点云投影到二维平面上,并在空间域中提取投影二维图像的结构相似性特征,以及在小波域中提取子带相似性特征。最后,我们提出了一种特征选择和学习模型来融合高维特征并预测彩色点云的视觉质量。大量实验结果表明,在 SIAT-PCQD、SJTU-PCQA、WPC2.0 和 ICIP2020 数据集上,所提出的 CF-PCQA 的皮尔逊线性相关系数(PLCC)分别为 0.9117、0.9005、0.9340 和 0.9826。此外,统计显著性检验表明,在这四个数据集上,CF-PCQA 明显优于最先进的 PCQA 基准方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信