Application of iPBS-retrotransposons markers for the assessment of genetic diversity and population structure among sugar beet (Beta vulgaris) germplasm from different regions of the world
{"title":"Application of iPBS-retrotransposons markers for the assessment of genetic diversity and population structure among sugar beet (Beta vulgaris) germplasm from different regions of the world","authors":"Gökhan Sadık, Mehtap Yıldız, Bilgin Taşkın, Metin Koçak, Pablo Federico Cavagnaro, Faheem Shehzad Baloch","doi":"10.1007/s10722-024-02148-3","DOIUrl":null,"url":null,"abstract":"<p>Sugar beet is an important agricultural crop product that has been produced and consumed worldwide since the eighteenth century and can adapt to various climatic and soil conditions. The two fundamental building blocks of any crop improvement program are germplasm resources, which contain genetic diversity and phenotypic expression of desired traits. In this study, a total of 58 sugar beet genotypes including 12 from Turkey, 4 from India, 12 from the United States of America, 16 from Iran, 12 from England and <i>Beta vulgaris</i> L. subsp. <i>maritima</i> L. Arcang. as wild species were characterized using 15 inter-primer binding site (iPBS) markers that produced intense and polymorphic bands in the germplasm library. Using these 15 iPBS markers, 102 polymorphic bands were produced and the average number of polymorphic bands was determined as 6.8. Polymorphism information content (PIC) values ranged between 0.58 and 0.83, and the average PIC value was found to be 0.70. It was determined that the most genetically different genotypes were PI 590697-US11 and PI 171508-TR8, with a distance of 0.73. Clustering algorithms Unweighted Pair Group Method Algorithm (UPGMA) and Principal Coordinate Algorithm (PCoA) confirmed that genotypes are an important factor in clustering, and STRUCTURE analysis divided sugar beet gene resources into six populations. Also, the analysis of molecular variance (AMOVA) showed that there was 8% variance among populations and 92% variance within populations. This is the first study to investigate the genetic diversity and population structure of sugar beet germplasm using the iPBS-retrotransposon marker system. The results of this research emphasized that iPBS markers are very successful and effective in examining the genetic diversity of sugar beet germplasm. The results obtained in this study provide a theoretical basis for future selection and breeding of superior sugar beet germplasm sources.</p>","PeriodicalId":12467,"journal":{"name":"Genetic Resources and Crop Evolution","volume":"14 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Resources and Crop Evolution","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10722-024-02148-3","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Sugar beet is an important agricultural crop product that has been produced and consumed worldwide since the eighteenth century and can adapt to various climatic and soil conditions. The two fundamental building blocks of any crop improvement program are germplasm resources, which contain genetic diversity and phenotypic expression of desired traits. In this study, a total of 58 sugar beet genotypes including 12 from Turkey, 4 from India, 12 from the United States of America, 16 from Iran, 12 from England and Beta vulgaris L. subsp. maritima L. Arcang. as wild species were characterized using 15 inter-primer binding site (iPBS) markers that produced intense and polymorphic bands in the germplasm library. Using these 15 iPBS markers, 102 polymorphic bands were produced and the average number of polymorphic bands was determined as 6.8. Polymorphism information content (PIC) values ranged between 0.58 and 0.83, and the average PIC value was found to be 0.70. It was determined that the most genetically different genotypes were PI 590697-US11 and PI 171508-TR8, with a distance of 0.73. Clustering algorithms Unweighted Pair Group Method Algorithm (UPGMA) and Principal Coordinate Algorithm (PCoA) confirmed that genotypes are an important factor in clustering, and STRUCTURE analysis divided sugar beet gene resources into six populations. Also, the analysis of molecular variance (AMOVA) showed that there was 8% variance among populations and 92% variance within populations. This is the first study to investigate the genetic diversity and population structure of sugar beet germplasm using the iPBS-retrotransposon marker system. The results of this research emphasized that iPBS markers are very successful and effective in examining the genetic diversity of sugar beet germplasm. The results obtained in this study provide a theoretical basis for future selection and breeding of superior sugar beet germplasm sources.
期刊介绍:
Genetic Resources and Crop Evolution is devoted to all aspects of plant genetic resources research. It publishes original articles in the fields of taxonomical, morphological, physiological, biochemical, genetical, cytological or ethnobotanical research of genetic resources and includes contributions to gene-bank management in a broad sense, that means to collecting, maintenance, evaluation, storage and documentation.
Areas of particular interest include:
-crop evolution
-domestication
-crop-weed relationships
-related wild species
-history of cultivated plants including palaeoethnobotany.
Genetic Resources and Crop Evolution also publishes short communications, e.g. newly described crop taxa, nomenclatural notes, reports of collecting missions, evaluation results of gene-bank material etc. as well as book reviews of important publications in the field of genetic resources.
Every volume will contain some review articles on actual problems. The journal is the internationalized continuation of the German periodical Die Kulturpflanze, published formerly by the Institute of Plant Genetics and Crop Plant Research at Gatersleben, Germany.
All contributions are in the English language and are subject to peer reviewing.