{"title":"Heatmap Design for Probabilistic Driver Repositioning in Crowdsourced Delivery","authors":"Aliaa Alnaggar, Fatma Gzara, James Bookbinder","doi":"10.1287/trsc.2022.0418","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of heatmaps as a control lever to manage the probabilistic repositioning of independent drivers in crowdsourced delivery platforms. The platform aims to maximize order fulfillment by dynamically matching drivers and orders and selecting heatmaps that trigger the probabilistic flow of unmatched drivers to balance driver supply and delivery requests across the service region. We develop a Markov decision process (MDP) model to sequentially select matching and heatmap decisions in which the repositioning behavior of drivers is captured by a multinomial logit discrete choice model. Because of the curse of dimensionality and the endogenous uncertainty of driver repositioning, the MDP model is solved using a rolling-horizon stochastic lookahead policy. This policy decomposes matching and heatmap decisions into two optimization problems: a two-stage stochastic programming upper bounding problem for matching decisions and a mixed-integer programming problem for heatmap decisions. We also propose a simple policy for efficiently solving large-scale problems. An extensive computational study on instances derived from the Chicago ride-hailing data set is conducted. Computational experiments demonstrate the value of heatmaps in improving order fulfillment beyond the level achieved by matching alone (up to 25%) and identify conditions that affect the benefit of using heatmaps to guide driver repositioning.Funding: The authors gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada through Discovery Grants [Grants RGPIN-2024-04881, RGPIN-2020-04498, and RGPIN-2019-06207] awarded to the first, second, and third authors, respectively.Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0418 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"11 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2022.0418","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes the use of heatmaps as a control lever to manage the probabilistic repositioning of independent drivers in crowdsourced delivery platforms. The platform aims to maximize order fulfillment by dynamically matching drivers and orders and selecting heatmaps that trigger the probabilistic flow of unmatched drivers to balance driver supply and delivery requests across the service region. We develop a Markov decision process (MDP) model to sequentially select matching and heatmap decisions in which the repositioning behavior of drivers is captured by a multinomial logit discrete choice model. Because of the curse of dimensionality and the endogenous uncertainty of driver repositioning, the MDP model is solved using a rolling-horizon stochastic lookahead policy. This policy decomposes matching and heatmap decisions into two optimization problems: a two-stage stochastic programming upper bounding problem for matching decisions and a mixed-integer programming problem for heatmap decisions. We also propose a simple policy for efficiently solving large-scale problems. An extensive computational study on instances derived from the Chicago ride-hailing data set is conducted. Computational experiments demonstrate the value of heatmaps in improving order fulfillment beyond the level achieved by matching alone (up to 25%) and identify conditions that affect the benefit of using heatmaps to guide driver repositioning.Funding: The authors gratefully acknowledge the support of the Natural Sciences and Engineering Research Council of Canada through Discovery Grants [Grants RGPIN-2024-04881, RGPIN-2020-04498, and RGPIN-2019-06207] awarded to the first, second, and third authors, respectively.Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0418 .
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.