Katherine Morelli, Sandro M Meier, Angela Zhao, Madhurima Choudhury, M Willis, Yves Barral, Jackie Vogel
{"title":"A fluid droplet harvests the force generated by shrinking microtubules in living cells","authors":"Katherine Morelli, Sandro M Meier, Angela Zhao, Madhurima Choudhury, M Willis, Yves Barral, Jackie Vogel","doi":"10.1101/2024.09.09.612121","DOIUrl":null,"url":null,"abstract":"The energy-consuming dynamic instability of microtubules generates significant forces which are thought to be harnessed to move large cargos in cells. However, identification of mechanisms which can capture the force released during microtubule depolymerization to move large loads has been elusive. In this work we show that a biomolecular condensate provides an elegant solution to this problem. Using live cell super-resolution microscopy, we directly observe that budding yeast +TIP bodies are nanoscale droplets with classic fluid-like behaviors which accumulate type V myosin (Myo2) at their surfaces. We find that conserved self-oligomerization interfaces in the protein Kar9 tune the biophysical properties of the viscoelastic +TIP body and its ability to efficiently move the mitotic spindle. Our findings introduce a paradigm for how forces generated by microtubule dynamics are harnessed in cells and open a frontier of research on nanoscale biomolecular condensates in their native environment.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"261 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.09.612121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The energy-consuming dynamic instability of microtubules generates significant forces which are thought to be harnessed to move large cargos in cells. However, identification of mechanisms which can capture the force released during microtubule depolymerization to move large loads has been elusive. In this work we show that a biomolecular condensate provides an elegant solution to this problem. Using live cell super-resolution microscopy, we directly observe that budding yeast +TIP bodies are nanoscale droplets with classic fluid-like behaviors which accumulate type V myosin (Myo2) at their surfaces. We find that conserved self-oligomerization interfaces in the protein Kar9 tune the biophysical properties of the viscoelastic +TIP body and its ability to efficiently move the mitotic spindle. Our findings introduce a paradigm for how forces generated by microtubule dynamics are harnessed in cells and open a frontier of research on nanoscale biomolecular condensates in their native environment.