Petr Pelech, Paula P Navarro, Andrea Vettiger, Luke H Chao, Christoph Allolio
{"title":"Stress-mediated growth determines E. coli division site morphogenesis","authors":"Petr Pelech, Paula P Navarro, Andrea Vettiger, Luke H Chao, Christoph Allolio","doi":"10.1101/2024.09.11.612282","DOIUrl":null,"url":null,"abstract":"In order to proliferate, bacteria must remodel their cell wall at the division site. The division process is driven by the enzymatic activity of peptidoglycan (PG) synthases and hydrolases around the constricting Z-ring. PG remodelling is regulated by de- and re-crosslinking enzymes, and the directing constrictive force of the Z ring. We introduce a model that is able to reproduce correctly the shape of the division site during the constriction and septation phase of <em>E. coli</em>. The model represents mechanochemical coupling within the mathematical framework of morphoelasticity. It contains only two adjustable parameters, associated with volumetric growth and PG remodelling, that are coupled to the mechanical stress in the bacterial wall. Different morphologies, corresponding either to mutant or wild type cells were recovered as a function of the remodeling parameter. In addition, a plausible range for the cell stiffness and turgor pressure was determined by comparing numerical simulations with bacterial cell plasmolysis data.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"133 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.11.612282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to proliferate, bacteria must remodel their cell wall at the division site. The division process is driven by the enzymatic activity of peptidoglycan (PG) synthases and hydrolases around the constricting Z-ring. PG remodelling is regulated by de- and re-crosslinking enzymes, and the directing constrictive force of the Z ring. We introduce a model that is able to reproduce correctly the shape of the division site during the constriction and septation phase of E. coli. The model represents mechanochemical coupling within the mathematical framework of morphoelasticity. It contains only two adjustable parameters, associated with volumetric growth and PG remodelling, that are coupled to the mechanical stress in the bacterial wall. Different morphologies, corresponding either to mutant or wild type cells were recovered as a function of the remodeling parameter. In addition, a plausible range for the cell stiffness and turgor pressure was determined by comparing numerical simulations with bacterial cell plasmolysis data.
为了增殖,细菌必须在分裂部位重塑细胞壁。分裂过程由收缩 Z 环周围的肽聚糖(PG)合成酶和水解酶的酶活性驱动。肽聚糖的重塑受去交联和再交联酶以及 Z 环的定向收缩力的调节。我们介绍的模型能够正确再现大肠杆菌在收缩和隔膜阶段分裂部位的形状。该模型在形态弹性数学框架内体现了机械化学耦合。它只包含两个可调参数,分别与体积增长和 PG 重塑有关,并与细菌壁的机械应力相耦合。作为重塑参数的函数,恢复了突变型或野生型细胞的不同形态。此外,通过比较数值模拟和细菌细胞解痉数据,确定了细胞硬度和张力压力的合理范围。