A low‐rank method for parameter‐dependent fluid‐structure interaction discretizations with hyperelasticity

Peter Benner, Thomas Richter, Roman Weinhandl
{"title":"A low‐rank method for parameter‐dependent fluid‐structure interaction discretizations with hyperelasticity","authors":"Peter Benner, Thomas Richter, Roman Weinhandl","doi":"10.1002/zamm.202300562","DOIUrl":null,"url":null,"abstract":"Fluid‐structure interaction models are used to study how a material interacts with different fluids at different Reynolds numbers. Examining the same model not only for different fluids but also for different solids allows to optimize the choice of materials for construction even better. A possible answer to this demand is parameter‐dependent discretization. Furthermore, low‐rank techniques can reduce the complexity needed to compute approximations to parameter‐dependent fluid‐structure interaction discretizations. Low‐rank methods have been applied to parameter‐dependent linear fluid‐structure interaction discretizations. The linearity of the operators involved allows to translate the resulting equations to a single matrix equation. The solution is approximated by a low‐rank method. In this paper, we propose a new method that extends this framework to nonlinear parameter‐dependent fluid‐structure interaction problems by means of the Newton iteration. The parameter set is split into disjoint subsets. On each subset, the Newton approximation of the problem related to the median parameter is computed and serves as initial guess for one Newton step on the whole subset. This Newton step yields a matrix equation whose solution can be approximated by a low‐rank method. The resulting method requires a smaller number of Newton steps if compared with a direct approach that applies the Newton iteration to the separate problems consecutively. In the experiments considered, the proposed method allows to compute a low‐rank approximation up to twenty times faster than by the direct approach.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fluid‐structure interaction models are used to study how a material interacts with different fluids at different Reynolds numbers. Examining the same model not only for different fluids but also for different solids allows to optimize the choice of materials for construction even better. A possible answer to this demand is parameter‐dependent discretization. Furthermore, low‐rank techniques can reduce the complexity needed to compute approximations to parameter‐dependent fluid‐structure interaction discretizations. Low‐rank methods have been applied to parameter‐dependent linear fluid‐structure interaction discretizations. The linearity of the operators involved allows to translate the resulting equations to a single matrix equation. The solution is approximated by a low‐rank method. In this paper, we propose a new method that extends this framework to nonlinear parameter‐dependent fluid‐structure interaction problems by means of the Newton iteration. The parameter set is split into disjoint subsets. On each subset, the Newton approximation of the problem related to the median parameter is computed and serves as initial guess for one Newton step on the whole subset. This Newton step yields a matrix equation whose solution can be approximated by a low‐rank method. The resulting method requires a smaller number of Newton steps if compared with a direct approach that applies the Newton iteration to the separate problems consecutively. In the experiments considered, the proposed method allows to compute a low‐rank approximation up to twenty times faster than by the direct approach.
超弹性参数相关流固耦合离散的低秩方法
流固耦合模型用于研究材料在不同雷诺数下与不同流体的相互作用。对同一模型的研究不仅适用于不同的流体,也适用于不同的固体,这样可以更好地优化建筑材料的选择。根据参数进行离散化是满足这一需求的一个可行方法。此外,低秩技术可以降低计算与参数相关的流固耦合离散近似所需的复杂性。低秩方法已被应用于与参数相关的线性流固耦合离散化。由于所涉及的算子具有线性,因此可以将所得到的方程转化为单个矩阵方程。用低秩方法可以近似求解。在本文中,我们提出了一种新方法,通过牛顿迭代将这一框架扩展到非线性参数相关流固耦合问题。参数集被分割成互不相交的子集。在每个子集上,计算与中位参数相关问题的牛顿近似值,并将其作为整个子集上一个牛顿步骤的初始猜测。这个牛顿步骤会产生一个矩阵方程,其解可以用低秩方法来近似。与对不同问题连续进行牛顿迭代的直接方法相比,该方法所需的牛顿步数更少。在实验中,所提出的方法计算低阶近似值的速度比直接方法快 20 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信